







# PUSHING BOUNDARIES TO CO-CREATE A HIGHER QUALITY OF LIFE

GGB trägt dazu bei, eine Welt der Bewegung mit minimalem Reibungsverlust durch Gleitlager und Oberflächentechnologien zu schaffen. Mit Forschung und Entwicklung, Test- und Produktionswerken in den USA, Deutschland, Frankreich, Brasilien, der Slowakei und China, arbeitet GGB eng mit Kunden weltweit an kundenspezifischen tribologischen Design-Lösungen, welche effizient und umweltverträglich sind. Die Ingenieure von GGB teilen ihr Fachwissen und ihre Leidenschaft für Tribologie mit einer Vielzahl von Industrien, die Automobilindustrie, Luft- und Raumfahrt sowie die industrielle Fertigung eingeschlossen. Für weitergehende Informationen zu Tribologie für Oberflächen von GGB besuchen Sie <a href="https://www.ggbearings.com/de">https://www.ggbearings.com/de</a>.

Unsere Produkte werden jeden Tag in unzähligen anspruchsvollen Anwendungen auf unserem Planeten eingesetzt. Es ist immer unser Ziel, überlegene Lösungen von hoher Qualität für die Anforderungen unserer Kunden zu bieten – ganz gleich, wohin diese Anforderungen unsere Produkte führen. Von Raumfahrzeugen bis hin zu Golfwagen und praktisch allem dazwischen ... wir stellen das branchenweit größte Angebot an leistungsstarken, wartungsfreien Gleitlagerlösungen für eine Vielzahl von Anwendungen zur Verfügung:

- Allgemeine Industrie - Bergbau - Eluidtechnik - Luft- und Raumfahrt - Primärmetalle

- <u>Automobil</u> - <u>E-Mobilität</u> - <u>Freizeitbranche</u> - <u>Medizintechnik</u> - <u>Schienenfahrzeuge</u>

- Bauwesen - Energie - Landwirtschaftliche Geräte - Öl- & Gas.

## Der GGB Vorteil



## **GERINGERE SYSTEMKOSTEN**

Gleitlager von GGB senken die Bearbeitungskosten der Wellen, da das Anbringen von Bohrungen und Schmiernuten überflüssig wird. Ihr kompakter einteiliger Aufbau ermöglicht Raumund Gewichtsersparnisse und vereinfacht die Montage.



## GERINGE REIBUNG, HOHE VERSCHLEIBFESTIGKEIT

Durch niedrige Reibungskoeffizienten erübrigt sich das erforderliche Schmieren, während ein reibungsloser Betrieb gewährt, der Verschleiß verringert und die Lebensdauer verlängert wird. Eine geringe Reibung verhindert zudem den Stick-Slip-Effekt oder die Haftreibung während der Inbetriebnahme.



## **UMWELTFREUNDLICH**

Die fett- und bleifreien GGB Gleitlager erfüllen die zunehmend strenger werdende Umweltgesetzgebung, wie beispielsweise die RoHS-Richtlinie der EU, die die Verwendung gefährlicher Stoffe in Elektro- und Elektronikgeräten beschränkt.



## **KUNDENSUPPORT**

Die flexible Produktionsplattform und das umfassende Liefernetzwerk von GGB garantieren schnelle und termingerechte Lieferungen.

Darüber hinaus bieten wir lokalen Support im Bereich Anwendungstechnik sowie technische Kundenbetreuung an.



## WARTUNGSFREI

Die wartungsfreien bzw. wartungsarmen Gleitlager von GGB sind selbstschmierend, wodurch sie ideal für Anwendungen sind, die eine lange Lebensdauer der Gleitlager ohne kontinuierliche Wartung erfordern.

## Höchste Qualitätsstandards



## **SICHERHEIT**

GGB hat eine tief verwurzelte Sicherheitskultur. Der Fokus liegt stets darauf, allen Mitarbeitern ein sicheres, gesundes Arbeitsumfeld zur Verfügung zu stellen. Sicherheit ist ein Grundwert bei GGB und in jeder Unternehmensebene der entscheidende Faktor, um das Ziel des industrieweit besten Arbeitsschutzes für die Mitarbeiter durchsetzen zu können.



## **EXZELLENZ**

Unsere erstklassigen Fertigungswerke in den USA, Brasilien, China, Deutschland, Frankreich und der Slowakei sind nach ISO 9001, IATF 16949, ISO 14001 und ISO 45001 zertifiziert. Damit haben wir Zugang zu den Best Practices der Industrie und können unser Qualitätsmanagementsystem nach den globalen Standards ausrichten.

Eine vollständige Liste unserer Zertifizierungen finden Sie auf unserer Website:

https://www.ggbearings.com/de/zertifikate



### RESPEKT

Wir glauben, dass Respekt für jeden Einzelnen und jedes Team zur Weiterentwicklung nötig ist. Die Zusammenarbeit unserer Mitarbeiter beruht auf gegenseitigem Respekt, unabhängig von Herkunft, Nationalität oder Unternehmensfunktion. Wir begrüßen Vielfalt und lernen voneinander.

## GGB - Wer wir sind

## BEI GGB SCHEUEN WIR UNS NICHT, RISIKEN FÜR UNSERE KUNDEN EINZUGEHEN.

Wir von GGB scheuen kein Risiko und nehmen gerne Herausforderungen an. Wir lieben, was wir tun und glauben, dass genau diese Leidenschaft uns die Innovationskraft verleiht, die das Beste aus den Menschen herausholt. Wir sind stolz darauf, dass wir schon früh in der Entwicklungsphase eng mit unseren Kunden zusammenarbeiten und dadurch mutiger und in alle Richtungen denken können und über die traditionellen Oberflächen Lösungen hinausgehen. Wir sind pflegen zuverlässige Partnerschaften, die auf Vertrauen, Empathie, Entschlossenheit, Teamgeist und Respekt aufbauen.

Führend in der Tribologie, bietet GGB mit seinen Gleitlager- und Beschichtungstechnologien eine Welt voller Bewegung mit minimalen Reibungsverlusten. Mit unserer globalen Präsenz und unserem umfangreichen anwendungstechnischen Fachwissen sind unsere Möglichkeiten praktisch endlos. Wir arbeiten daran, die Grenzen des Möglichen zu überwinden und Kunden auf allen Märkten dafür zu begeistern, sich mit uns zusammenzuschließen und innovativ zu werden.



## Inhaltsverzeichnis

| Einleitung                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6 Lagereinbau                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eigenschaften und Vorteile                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.1 Abmessungen und Toleranzen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Aufbau                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.2 Toleranzen für Kleinstspiele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Lieferbare Produkte                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Kenngrößen                                   | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wärmedehnung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.3 Gestaltung der Gegenlaufflächen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| und elektrische Kenngrößen                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.4 Montage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chemische Beständigkeit                      | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 28<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Schmierung                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fluchtung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Trockenlauf                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 29<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Schmiermittelwahl                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Montage von Anlaufscheiben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Fette                                        | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Gleitstreifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Flüssigkeiten, die keinen Schmierfilm bilden | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7 Bearbeitung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reibung                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.1 Spanende Bearbeitung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Tribologische Betriebszustände               | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.2 Ausspindeln                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Schmierung                                   | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.3 Reiben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                            | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.4 Räumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.5 Schwingräumen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.6 Nachbearbeitung von fertigen Lagern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.7 Bohren von Schmierlöchern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| intervalle bei Fettschmierung                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.8 Schneiden von Streifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 Oberflächenbehandlung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | HI-EX® Material Gegenlaufflächen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 Standardteile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ·                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.1 PM HI-EX® zylindrische Buchsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Permanente Drehbewegung                      | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.2 MB HI-EX® zylindrische Buchsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Oszillierende Rotationsbewegung              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.3 HI-EX® Anlaufscheiben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.4 HI-EX® Gleitstreifen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Belastung Art der Belastung                  | <b>17</b><br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 Prüfmethoden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Temperatur                                   | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.1 Prüfung von gerollten Buchsen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Gegenlauffläche                              | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 48<br>48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Lagergröße                                   | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Prüfung C nach ISO 3547 Teil 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Prüfung D nach ISO 3547 Teil 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| •                                            | <b>20</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11 Technisches Datenblatt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Geschätzte Betriebslebensdauer               | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Formelzeichen und Benennungen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Geschätztes Nachschmierintervall             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Produkt Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Belastung                                    | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · ·                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                              | Lieferbare Produkte  Kenngrößen Physikalische, mechanische und elektrische Kenngrößen Chemische Beständigkeit Schmierung Trockenlauf Schmiermittelwahl Fette Öle Flüssigkeiten, die keinen Schmierfilm bilden Reibung Tribologische Betriebszustände Schmierung Verhalten von HI-EX-Lagern mit Flüssigkeitsschmierung Konstruktionshinweise bei Flüssigkeitsschmierung Verschleißrate und Nachschmierintervalle bei Fettschmierung Reibverschleiß Konstruktive Auslegung Spezifische Belastung Grenzwert der spezifischen Belastung Gleitgeschwindigkeit Permanente Drehbewegung Oszillierende Rotationsbewegung Temperatur Gegenlauffläche Lagergröße Berechnung der voraussichtlichen Lebensdauer bei Fettschmierung Lagerkenngrößen Geschätzte Betriebslebensdauer Geschätztes Nachschmierintervall Oszillierende Bewegung und dynamische | Eigenschaften und Vorteile  Aufbau  Lieferbare Produkte  Kenngrößen  Physikalische, mechanische und elektrische Kenngrößen  Chemische Beständigkeit  Schmierung  Trockenlauf  Schmieruntelwahl Fette Öle Flüssigkeiten, die keinen Schmierfilm bilden  Reibung  Tribologische Betriebszustände Schmierung  Verhalten von HI-EX-Lagern mit Flüssigkeitsschmierung  Verhalten von HI-EX-Lagern mit Flüssigkeitsschmierung  Verschleißrate und Nachschmierintervalle bei Fettschmierung  Reibverschleiß  Konstruktive Auslegung  Spezifische Belastung  Grenzwert der spezifischen Belastung  Gleitgeschwindigkeit  Permanente Drehbewegung  Oszillierende Rotationsbewegung  Gegenlauffläche  Lagergröße  Berechnung der voraussichtlichen  Lebensdauer bei Fettschmierung  Lagergrößen  Geschätzte Betriebslebensdauer  Geschätzte Sachschmierintervall  Oszillierende Bewegung und dynamische  Belastung  21 | Eigenschaften und Vorteile  Aufbau  Lieferbare Produkte  Kenngrößen  Kenngrößen  Sphysikalische, mechanische und elektrische Kenngrößen  Schmierung  Schmierung  Trockenlauf  Schmierung  Trockenlauf  Schmierund  Trockenlauf  Schmiermittelwahl  Fette Öle Öle Öle Stelbung  Troblogische Bettiebszustände  Triblologische Bettiebsehenden  Triblologisch |

## 1 Einleitung

Mit diesem Handbuch werden umfassende technische Information über HI-EX®-Gleitlager veröffentlicht, um den Konstrukteur in die Lage zu versetzen, die richtige Lagergröße, die Betriebskenndaten und die Lagerleistung zu bestimmen.

Es werden Informationen über das HI-EX® Standardprogramm sowie über HI-EX® Sonderteile gegeben. Alle HI-EX®-Produkte werden kundenspezifisch hergestellt und sind deshalb nicht ab Lager lieferbar.

Bei außergewöhnlichen, anwendungsbedingten Konstruktionsproblemen steht unsere Forschungs- und Entwicklungsabteilung für die Problemlösung jederzeit zur Verfügung.

Wir verbessern und erweitern laufend die Entwicklungsmöglichkeiten und das theoretische Wissen. Deshalb sollten Sie mit uns in Verbindung treten, wenn Sie zusätzliche Informationen benötigen, die über den Rahmen dieses Handbuches hinausgehen.

Wir empfehlen allen unseren Kunden - wann immer es notwendig und möglich ist eine Prototyperprobung durchzuführen.

## 1.1 EIGENSCHAFTEN UND VORTEILE

- PM HI-EX® Lager sind einbaufertig und benötigen keine weitere Bearbeitung nach dem Einbau
- MB HI-EX® Buchsen können nach der Montage auf einen Buchsen-Innendurchmesser mit der Toleranzklasse H7 bearbeitet werden
- Einsatz ist möglich bei Rotation, oszillierenden Rotationsbewegungen und Translationsbewegungen
- dünnwandig, platzsparend, leicht
- hohes statisches und dynamisches Lastaufnahmevermögen
- geringer Verschleiß

- geringe Fressneigung
- HI-EX® gestattet wartungsarmen Betrieb
- HI-EX® gestattet hohe pv-Werte
- die HI-EX®-Laufschicht hat eine gute chemische Beständigkeit
- keine Wasseraufnahme und somit Maßstabilität kein Quellen
- HI-EX® ist einsatzfähig in Flüssigkeiten mit niedriger Viskosität und in Medien, die keinen Schmierfilm bilden
- Temperaturarbeitsbereich von -150 °C bis +250 °C

## 2 Aufhau

HI-EX® ist ein Verbundwerkstoff, der gezielt für den Betrieb mit Mangelschmierung entwickelt wurde und besteht aus drei miteinander verbundenen Schichten:

einem Stahlträgerrücken, einer Zwischenschicht aus poröser Sinterbronze und einer Laufschicht aus PEEK (Polyetheretherketon) mit zusätzlichen Füllstoffen vor allem PTFE (Polytetrafluorethylen) und Graphit.

Der Stahlrücken sorgt für mechanische Festigkeit und die Sinterbronze gewährleistet eine feste Verklammerung mit der Laufschicht. Dieser Verbundschichtaufbau unterstützt die Maßhaltigkeit, verbessert die Wärmeabfuhr und reduziert somit die Temperatur an der Lagerstelle.

Die Laufschicht über der Sinterbronze-Zwischenschicht beträgt 0,3 mm und ist mit einem Schmiertaschensystem versehen.

Dieses dient als Schmierstoffreservoir und ermöglicht eine optimale Schmierstoffverteilung über die gesamte Gleitfläche.

Bei Anwendungen mit Flüssigkeitsschmierung, besitzt die Laufschicht kein Schmiertaschensystem. Die Schichtdicke über der Bronzeschicht beträgt ebenfalls 0,3 mm.



Abb. 1: HI-EX Mikroschliffbild

## 2.1 LIEFERBARE PRODUKTE

## HI-EX®-Standardteile (nicht lagerhaltig)

Diese Produkte werden nach den internationalen Gleitlagernormen, sowie internen Werksnormen hergestellt.

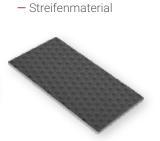

- Zylindrische Buchsen PM metrische Abmessungen, einbaufertig, keine Nachbearbeitung im eingebauten Zustand - für genormte Wellen nach h6 - h8. **MB** metrische Abmessungen, nachbearbeitbar (vor oder nach der Montage).



Abb. 2: Standardteile



Anlaufscheiben



HI-EX®-Sonderteile

Diese Produkte werden nach Kundenzeichnungen mit oder ohne unsere Designverantwortung hergestellt. Beispiele:







- Lagerschalen



Geradführungen



- Stanzteile

- Biegeteile

Abb. 3: Beispiele für Sonderteile

## 3 Kenngrößen

## 3.1 PHYSIKALISCHE, MECHANISCHE UND ELEKTRISCHE KENNGRÖßEN

| EIGENSCHAFTEN                                                                                  | SYMBOL              | EINHEIT             | WERT HI-EX®   | BEMERKUNGEN                                         |
|------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------|-----------------------------------------------------|
| PHYSIKALISCHE KENNGRÖßEN                                                                       |                     |                     |               |                                                     |
| Wärmeleitfähigkeit                                                                             | λ                   | W/mK                | 52            |                                                     |
| <b>Linearer Wärmeausdehnungs- koeffizient</b> parallel zur Oberfläche senkrecht zur Oberfläche | $a_1$ $a_2$         | 10 <sup>-6</sup> /K | 11<br>29      |                                                     |
| Betriebstemperatur                                                                             | $T_{max}$ $T_{min}$ | °C                  | +250<br>- 150 |                                                     |
| MECHANISCHE KENNGRÖßEN                                                                         |                     |                     |               |                                                     |
| Maximale Druckfestigkeit                                                                       | $\sigma_{\text{C}}$ | N/mm <sup>2</sup>   | 380           | gemessen an einer Scheibe<br>Ø 25 mm x 2,45 mm dick |
| Maximale Belastung statisch dynamisch                                                          | - Sta.IIIax         | N/mm²               | 140<br>140    |                                                     |
| ELEKTRISCHE KENNGRÖßEN                                                                         |                     |                     |               |                                                     |
| Spezifischer Durchgangswiderstand der PEEK- Schicht                                            | $p_D$               | Ωcm                 | >109          |                                                     |

Tabelle 1: HI-EX-Eigenschaften

## 3.2 CHEMISCHE BESTÄNDIGKEIT

Tabelle 2 zeigt das chemische Verhalten von HI-EX® gegenüber verschiedenen chemischen Medien. Dieses ist, wann immer möglich, durch Prototypversuche zu belegen.

| CHEMISCHES MEDIUM                    | %  | °C | HI-EX® |
|--------------------------------------|----|----|--------|
| KONZENTRIERTE SÄUREN                 |    |    |        |
| Salzsäure/<br>Chlor-Wasserstoffsäure | 5  | 20 | -      |
| Salpetersäure                        | 5  | 20 | -      |
| Schwefelsäure                        | 5  | 20 | -      |
| SCHWACHE SÄUREN                      |    |    |        |
| Essigsäure                           | 5  | 20 | -      |
| Ameisensäure                         | 5  | 20 | -      |
| BASEN                                |    |    |        |
| Ammoniak                             | 10 | 20 | 0      |
| Ätznatron                            | 5  | 20 | 0      |

| CHEMISCHES MEDIUM            | °C | HI-EX® |
|------------------------------|----|--------|
| LÖSUNGSMITTEL                |    |        |
| Aceton                       | 20 | +      |
| Tetrachlorkohlenstoff        | 20 | +      |
| SCHMIERMITTEL UND KRAFTSTOFF | E  |        |
| Heizöl                       | 20 | +      |
| Benzin                       | 20 | +      |
| Petroleum                    | 20 | +      |
| Dieselkraftstoff             | 20 | +      |
| Erdöl                        | 70 | +      |
| HFA-ISO46 hoch esterhaltig   | 70 | +      |
| HFC-Wasser-Glycol            | 70 | +      |
| HFD-Phosphatester            | 70 | +      |
| Wasser                       | 20 | 0      |
| Seewasser                    | 20 | -      |

Tabelle 2: HI-EX-chemische Beständigkeit

- + Geeignet: Korrosiver Schaden wird nicht erwartet.
- o Akzeptabel: Geringer korrosiver Angriff kann stattfinden, ohne eine Beeinträchtigung des Materialaufbaues und des tribologischen Verhaltens von HI-EX®.
- Ungeeignet: Korrosiver Schaden wird auftreten, der sowohl Materialaufbau und tribologisches Verhalten beeinflussen wird.

## 4 Schmierung

## 4.1 TROCKENLAUF

 $HI-EX^{\otimes}$  kann auch ohne Schmierung eingesetzt werden. Die Bedingungen dafür sind pU-Faktor < 0,01 N/mm<sup>2</sup> und U < 2,5 m/s. Das Verschleißverhalten ist wenn möglich in Versuchen zu ermitteln.

## 4.2 SCHMIERMITTELWAHL

HI-EX® wird normalerweise geschmiert. Die Auswahl des Schmiermittels hängt ab:

- vom pU-Faktor und der Gleitgeschwindigkeit
- von der Stabilität des Schmiermittels bei den vorherrschenden Betriebsbedingungen

#### **Fette**

Das Betriebsverhalten für die unterschiedlichen Fettarten kann Tabelle 3 entnommen werden. Fette mit EP-Zusätzen, erhöhten Anteilen von Graphit oder MoS<sub>2</sub> werden für den Einsatz mit HI-EX nicht empfohlen.

HI-EX® kann auch bei Temperaturen eingesetzt werden, die höher liegen als die üblicherweise zulässigen Werte für die Fette. Der Einsatz, bzw. die Lagerleistung wird somit in der Regel mehr durch das Schmiermittel begrenzt und nicht durch das Lagermaterial. Für Temperaturen über 80 °C ist die Eignung des Fettes durch Versuche zu belegen. Wir empfehlen Hochtemperaturfett oder Fette auf Silikonölbasis. Über 150 °C sollte der epU-Wert auf unter 1,0 N/mm² begrenzt werden. Die Abschmierungsintervalle sollten 500 Stunden nicht überschreiten.

### Öle

Für HI-EX® wird auch Ölschmierung empfohlen. Mineralöle sollten nur bis max. 150 °C eingesetzt werden. HI-EX® ist allerdings beständig gegen Oxydationsprodukte aus Mineralölen, die über 115 °C entstehen können. Für diese Betriebsbedingungen empfehlen wir synthetische Schmiermittel.

#### Flüssigkeiten, die keinen Schmierfilm bilden

HI-EX® bringt zufriedenstellende Laufleistungen mit Flüssigkeiten, die keinen Schmierfilm bilden und Medien mit niedriger Viskosität wie z.B. Polyethylenglycol, Polyglycol-Schmiermittel, Wasser-Ölemulsionen, Stoßdämpferölen, Kerosin und Wasser.

Eine Flüssigkeit ist generell einsatzfähig, wenn weder die PEEK-Laufschicht noch die Sinterbronze-Zwischenschicht angegriffen wird. Chemisches Verhalten: Siehe Tabelle 2.

Nachweis der Verwendbarkeit: HI-EX®-Probe für 2-3 Tage in die gewählte Flüssigkeit eintauchen (Temperatur der Flüssigkeit 15-20 °C über der Betriebstemperatur).

Folgende Hinweise zeigen an, dass HI-EX® nicht einsatzfähig ist:

- deutliche Veränderung der HI-EX®-Wanddicke
- sichtbare Veränderung der Lageroberfläche von Hochglanz auf Matt
- sichtbare Veränderung der Mikrostruktur der Bronze-Sinter-Schicht.

## 4 Schmierung

| HERSTELLER  | FETTBEZEICHNUNG   | TYP<br>ÖL           | VERSEIFUNG W             | ERTUNG |
|-------------|-------------------|---------------------|--------------------------|--------|
|             | Energrease LS2    | Mineral             | Lithium verseift         | +      |
| ВР          | Energrease LT2    | Mineral             | Lithium verseift         | +      |
|             | Energrease FGL    | Mineral             | nicht verseift           | 0      |
|             | Energrease GSF    | Synthetisch         | NA                       | 0      |
| Century     | Lacerta ASD       | Mineral             | Lithium/Polymer          | 0      |
| Century     | Lacerta CL2X      | Mineral             | Calcium                  | -      |
|             | Molykote 55M      | Silikon             | Lithium verseift         | 0      |
| Daw Carning | Molykote PG65     | PAO                 | Lithium verseift         | +      |
| Dow Corning | Molykote PG75     | Synthetisch/Mineral | Lithium verseift         | 0      |
|             | Molykote PG602    | Mineral             | Lithium verseift         | 0      |
|             | Rolexa.1          | Mineral             | Lithium verseift         | +      |
| Elf         | Rolexa.2          | Mineral             | Lithium verseift         | 0      |
|             | Epexelf.2         | Mineral             | Lithium/Calcium verseift | -      |
|             | Andok C           | Mineral             | Natrium verseift         | 0      |
| Esso        | Andok 260         | Mineral             | Natrium verseift         | 0      |
|             | Cazar K           | Mineral             | Calcium verseift         | -      |
| Mobil       | Mobilplex 47      | Mineral             | Calcium verseift         | -      |
| IVIODII     | Mobiltemp 1       | Mineral             | nicht verseift           | 0      |
|             | BG622             | White Mineral       | Calcium verseift         | 0      |
| Rocol       | Sapphire          | Mineral             | Lithium Complex          | -      |
|             | White Food Grease | White Öl            | Lebensmittel zugelassen  | -      |
|             | Albida R2         | Mineral             | Lithium Complex          | +      |
|             | Axinus S2         | Mineral             | Lithium                  | 0      |
| Shell       | Darina R2         | Mineral             | Anorganisch nicht versei | ft +   |
|             | Stamina U2        | Mineral             | Polyurea                 | -      |
|             | Tivela A          | Synthetisch         | NA                       | 0      |
| Total       | Aerogrease        | Synthetisch         | NA                       | +      |
| IOIdI       | Multis EP2        | NA                  | Lithium                  | +      |

Tabelle 3: Betriebsverhalten von Fetten

- + geeignet
- akzeptabel
- ungeeignet

**NA** keine Daten verfügbar

## **4.3 REIBUNG**

Der "stick-slip" Effekt ist bei geschmierten HI-EX®-Lagern gering. Der Reibwert von geschmiertem HI-EX® hängt von den Betriebsbedingungen ab, wie in 4.4 dargestellt. Eine Vorerprobung ist dann zu empfehlen, wenn präzise Aussagen über den Reibwert erforderlich sind.

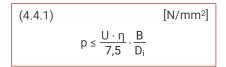
## 4.4 TRIBOLOGISCHE BETRIEBSZUSTÄNDE

Nachfolgend einige allgemeine Grundlagen für den Betrieb mit Schmiermitteln und Anwendungshinweise für HI-EX®.

### **Schmierung**

Die Dicke des Schmierfilmes zwischen Lager und Gegenfläche ist bestimmend für die drei möglichen tribologischen Betriebszustände.

Diese hängen wiederum ab von:


- den Lagerabmessungen
- der Gleitgeschwindigkeit
- dem Lagerspiel
- der Belastung
- der Schmiermittelviskosität
- der Durchsatzmenge eines Schmiermittels

## **Hydrodynamische Schmierung**

Charakteristische Merkmale:

- vollkommene Trennung von Lager und Welle durch den Schmiermittelfilm
- sehr niedriger Reibungskoeffizient: 0,001 0,01
- kein Verschleiß, da kein Kontakt zwischen Lager und Welle besteht

Hydrodynamische Bedingungen bestehen, wenn



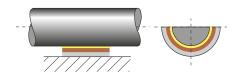



Abb. 4: Hydrodynamische Schmierung

### Mischreibung

Charakteristische Merkmale:

- hydrodynamische Schmierung und Festkörperreibung
- Lastübertragung teilweise durch komprimierte Schmiermittel aber auch Festkörperkontakt
- Reibwert und Verschleiß hängen vom hydrodynamischen Traganteil ab

 HI-EX® gewährleistet dabei geringe Reibungs- und Verschleißwerte für den Anteil der Kraft, der durch Festkörperberührung übertragen wird

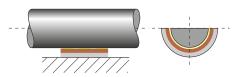



Abb. 5: Mischreibung

## 4 Schmierung

### Festkörperberührung

Charakteristische Merkmale:

- Berührung von Lager und Welle keine Trennung der beiden Oberflächen durch Schmiermittel.
- Die Auswahl des Gleitlagerwerkstoffes beeinflusst die Betriebssicherheit.
- Wellenverschleiß (mit Abrieb) möglich

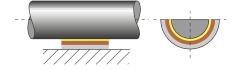



Abb. 6: Festkörperberührung

- die ausgezeichnete Verschleißfestigkeit von HI-EX® minimiert den Verschleiß unter diesen Betriebsbedingungen.
- die typische dynamische Reibungszahl von HI-EX® im Bereich der Festkörperberührung beträgt: 0,02 0,1.
- die typische statische Reibungszahl von HI-EX® im Bereich der Festkörperberührung beträgt: 0,03 0,15.

## 4.5 VERHALTEN VON HI-EX®-LAGERN MIT FLÜSSIGKEITSSCHMIERUNG

### Hohe spezifische Belastungen

Im Bereich der Festkörperberührung und Mischreibung zeigt HI-EX® ausgezeichneten Verschleißwiderstand bei geringen Reibwerten.

### Start/Stop unter Belastungen

Im Bereich der Festkörperberührung und Mischreibung bei niedrigen Geschwindigkeiten, die den Aufbau eines hydrodynamischen Schmierfilmes verhindern.

HI-EX® reduziert den Verschleiß.

### Mangelschmierung

Viele Lagerstellen erfordern den Betrieb mit zusätzlicher Schmiermittelversorgung, z. B. mit Spritz- oder Ölnebel. PEEK hat eine geringere Wärmeableitung im Vergleich zu konventionellen metallischen Lagern. Abhängig von den Betriebsbedingungen kann HI-EX® einen größeren Schmiermitteldurchsatz zur Abführung der erzeugten Reibwärme benötigen.

- HI-EX® zeigt dabei einen größeren Verschleißwiderstand als konventionelle metallische Gleitlager.

## 4.6 KONSTRUKTIONSHINWEISE BEI FLÜSSIGKEITSSCHMIERUNG

Abb. 7 auf der folgenden Seite zeigt die drei oben besprochenen Betriebsbereiche für die Gleitgeschwindigkeit im Verhältnis zur spezifischen Belastung und zur Schmiermittelviskosität.

### **Anmerkung:**

Die Viskosität ist direkt abhängig von der Betriebstemperatur. Falls diese nicht bekannt ist, kann ein Wert eingesetzt werden, der 25°C über der Raumtemperatur liegt.

## **Bereich 1 von Abildung 7**

Das Lager wird im Bereich der Festkörperberührung betrieben. Der pU-Faktor bestimmt die Lagerlebensdauer.

Die HI-EX®-Laufleistung wird wie folgt ermittelt (das Ergebnis wird vermutlich unter dem der tatsächlichen Möglichkeiten liegen):

Berechne den effektiven epU-Faktor nach den Gleichungen in 5.8 auf Seite 21.

Wenn epU/ $\eta \le 0.2$  dann ist

(4.6.1) 
$$L_H = \frac{2250}{\left(\frac{\text{epU}}{\eta}\right)^{0.5}} \cdot a_Q \cdot a_T \cdot a_S$$
 [h]

Wenn  $0.2 < epU/\eta \le 1.0$  dann ist

(4.6.2) 
$$L_{H} = \frac{1000}{\left(\frac{\text{epU}}{\eta}\right)} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$$
 [h]

Wenn epU/ $\eta$  > 1,0 dann ist

(4.6.3) [h]
$$L_{H} = \frac{1000}{\left(\frac{\text{epU}}{\eta}\right)^{2}} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$$
epU siehe (5.8.2), page 21

### **Bereich 2 von Abildung 7**

Das Lager arbeitet im Mischreibungsgebiet.

Der erzeugte Schmierfilm führt zu einer teilweisen Trennung vom Zapfen im Lager.

Unter diesen Bedingungen hängt die Betriebslebensdauer von der Viskosität des Schmiermittels und teilweise vom pU-Wert ab.

### Bereich 3 von Abildung 7

Das Lager arbeitet im hydrodynamischen Bereich. Der Verschleiß des Lagerwerkstoffes ist nur noch abhängig vom Schmiermittel und der Häufigkeit der Start/Stop-Vorgänge.

### Bereich 4 von Abildung 7

Das Lager arbeitet im Betriebsbereich mit den höchsten Anforderungen

- Lagerbelastung entweder mit hoher Geschwindigkeit oder hoher Belastung, oder einer Kombination von beiden
- Diese Art der Belastung kann bedeuten
  - Erhöhte Betriebstemperatur
  - und / oder hohe Verschleißrate.

- Das Lagerverhalten kann verbessert werden durch:
  - Einsatz von HI-EX® ohne Schmiertaschen (glatte Lauffläche),
  - zusätzliche Anbringungen von einer oder mehreren Ölverteilernuten in der Lagerlauffläche,
  - Mittenrauhwert der Welle  $R_a$  < 0,05  $\mu m$ .

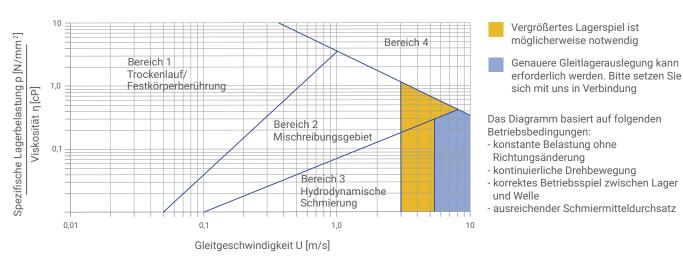



Abb. 7: Konstruktionshilfe für geschmierte Lageranwendungen

## 4 Schmierung

|                 |      |      |      |      |      | VISCOS | ITÄT cP |      |      |      |      |     |     |     |     |
|-----------------|------|------|------|------|------|--------|---------|------|------|------|------|-----|-----|-----|-----|
| Temperatur [°C] | 0    | 10   | 20   | 30   | 40   | 50     | 60      | 70   | 80   | 90   | 100  | 110 | 120 | 130 | 140 |
| Schmierstoff    |      |      |      |      |      |        |         |      |      |      |      |     |     |     |     |
| ISO VG 32       | 310  | 146  | 77   | 44   | 27   | 18     | 13      | 9,3  | 7,0  | 5,5  | 4,4  | 3,6 | 3,0 | 2,5 | 2,2 |
| ISO VG 46       | 570  | 247  | 121  | 67   | 40   | 25     | 17      | 12   | 9,0  | 6,9  | 5,4  | 4,4 | 3,6 | 3,0 | 2,6 |
| ISO VG 68       | 940  | 395  | 190  | 102  | 59   | 37     | 24      | 17   | 12   | 9,3  | 7,2  | 5,8 | 4,7 | 3,9 | 3,3 |
| ISO VG 100      | 2110 | 780  | 335  | 164  | 89   | 52     | 33      | 22   | 15   | 11,3 | 8,6  | 6,7 | 5,3 | 4,3 | 3,6 |
| ISO VG 150      | 3600 | 1290 | 540  | 255  | 134  | 77     | 48      | 31   | 21   | 15   | 11   | 8,8 | 7,0 | 5,6 | 4,6 |
| Diesel Öl       | 4,6  | 4,0  | 3,4  | 3,0  | 2,6  | 2,3    | 2,0     | 1,7  | 1,4  | 1,1  | 0,95 |     |     |     |     |
| Benzin          | 0,6  | 0,56 | 0,52 | 0,48 | 0,44 | 0,40   | 0,36    | 0,33 | 0,31 |      |      |     |     |     |     |
| Kerosim         | 2,0  | 1,7  | 1,5  | 1,3  | 1,1  | 0,95   | 0,85    | 0,75 | 0,65 | 0,60 | 0,55 |     |     |     |     |
| Wasser          | 1,79 | 1,30 | 1,0  | 0,84 | 0,69 | 0,55   | 0,48    | 0,41 | 0,34 | 0,32 | 0,28 |     |     |     |     |

Tabelle 4: Viskositätswerte

## 4.7 VERSCHLEIBRATE UND NACHSCHMIERINTERVALLE BEI FETTSCHMIERUNG

Bei einer spezifischen Belastung unter 100 N/mm² liegt beim fettgeschmierten HI-EX®-Lager der Einlaufverschleiß bei ca. 2-4 µm. Danach folgt eine Phase geringen Betriebsverschleißes bis das Schmiermittel erschöpft ist und der Verschleiß steigt. Wenn eine Nachschmierung rechtzeitig erfolgt - bevor sich der Verschleiß vergrößert - läuft das Lager mit minimalem Verschleiß langfristig zufriedenstellend. Abb. 8 zeigt ein typisches Verschleißbild.

Über 100 N/mm² ist der Einlaufverschleiß größer, typischerweise ca. 20-40 µm gefolgt von einer Phase mit abnehmender Verschleißrate, bis das Lager ein gleiches Verhältnis Verschleiß/Lebensdauer zeigt wie in Abb. 8 angedeutet. Die Lebensdauer wird durch den Verschleiß in der Lastzone begrenzt. Ist die Verschleißtiefe größer als 0,15 mm, wird das Fettvolumen in den Schmiertaschen reduziert und öfteres Nachschmieren wird erforderlich.

#### Reibverschleiß

der Schmiertaschenabstand sind, können lokalen Verschleiß der Gegenlaufflächen nach langer Betriebszeit hervorrufen. Das Schmiertaschenmuster wird dabei in die Gegenlauffläche übertragen und kann Ursache für Reibverschleiß werden. In diesem Falle kann der Einsatz von DS anstelle HI-EX® vorgeschlagen werden.

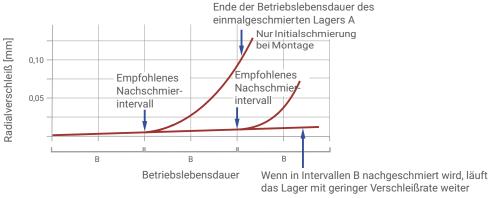



Abb. 8: Typisches Verschleißverhalten von HI-EX

## 5 Konstruktive Auslegung

Die bestimmenden Größen zur Festlegung von Lagerabmessungen und zur Ermittlung der Betriebslebensdauer für ein HI-EX®-Lager sind:

- Grenzwert der spezifischen Belastung p<sub>lim</sub> [N/mm<sup>2</sup>]
- pU-Faktor [N/mm<sup>2</sup> x m/s]
- Mittenrauhwert Ra der Gegenlauffläche [µm]
- Material der Gegenlauffläche
- Temperatur T [°C]
- Andere betriebsbedingte Faktoren, z. B. Gehäuseausführung, Schmutzanfall, Schmierung.

## **5.1 SPEZIFISCHE BELASTUNG**

Die spezifische Belastung p in N/mm<sup>2</sup> wird ermittelt, in dem die Nennbelastung (tatsächliche Lagerkraft) durch die projizierte Lagerfläche dividiert wird.

**Buchsen** 

(5.1.1) 
$$[N/mm^2]$$
  $p = \frac{F}{D_i \cdot B}$ 

**Anlaufscheiben** 

(5.1.2) 
$$p = \frac{4F}{\pi \cdot (D_o^2 - D_i^2)}$$

Gleitstreifen

(5.1.3) 
$$p = \frac{F}{L \cdot W}$$

### Grenzwert der spezifischen Belastung

Die Maximalbelastung für ein HI-EX®-Lager wird durch den Grenzwert der spezifischen Belastung ausgedrückt. Er ist abhängig von der Art der Belastung und der Art der Schmierung. Der maximal zulässige p<sub>lim</sub>-Wert wird erzielt bei konstanten Kräften auf das Lager. Dynamische und oszillierende Bewegungen führen zu Laufschichtermüdung und reduzieren somit den Grenzwert der spezifischen Belastung. Die Grenzwerte It. Tabelle 5 dürfen nicht überschritten werden. Die Grenzwerte für die spezifische Belastung in Tabelle 5 basieren auf guter Fluchtung von Lager und Welle.

Der Grenzwert der spezifischen Belastung für HI-EX® reduziert sich bei Temperaturen über 70°C und fällt auf ca. die Hälfte der in Tabelle 5 angegebenen Werte bei Temperaturen über 150 °C.

Dynamische oder oszillierende Kräfte führen zur Laufschichtermüdung und reduzieren somit den Grenzwert der spezifischen Belastung (Abb. 9, Seite 16).

| BELASTUNG               | BETRIEBSBEDINGUNG                                                                                                  | SCHMIERUNG                            | Plim |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
| Statisch                | Konstant Intermittierende oder sehr<br>niedrige (<0,01 m/s) kontinuierliche<br>Dreh- oder oszillierende Bewegungen | Fett oder Öl                          | 140  |
| Statisch                | Konstant permanente Dreh- oder oszillierende Bewegungen                                                            | Fett oder Öl<br>(Festkörperberührung) | 90   |
| Statisch oder dynamisch | Konstant oder dynamisch permanente<br>Dreh- oder oszillierende Bewegungen                                          | ÖI (hydrodynamisch)                   | 60   |

Tabelle 5: Grenzwert der spezifischen Belastung  $p_{\text{lim}}$  für HI-EX

## 5 Konstruktive Auslegung

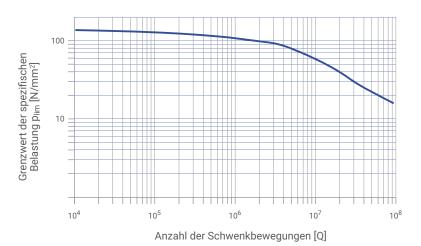



Abb. 9: Grenzwert der spezifischen Belastung plim für HI-EX bei dynamischen Belastungen oder oszillierenden Betriebsbedingungen

## **5.2 GLEITGESCHWINDIGKEIT**

Die Gleitgeschwindigkeit U [m/s] wird wie folgt ermittelt:

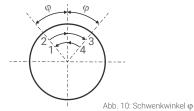
### **Permanente Drehbewegung**

### **Buchsen**

## (5.2.1) [m/s] $U = \frac{D_i \cdot \pi \cdot N}{60 \cdot 10^3}$

### **Anlaufscheiben**

(5.2.2) 
$$U = \frac{D_0 + D_i}{2} \cdot \pi \cdot N$$
 [m/s]


## Oszillierende Rotationsbewegung

### **Buchsen**

(5.2.3) 
$$U = \frac{D_i \cdot \pi}{60 \cdot 10^3} \cdot \frac{4\phi \cdot N_{OSZ}}{360}$$

#### **Anlaufscheiben**

(5.2.4) 
$$U = \frac{\frac{D_o + D_i}{2} \cdot \pi}{60 \cdot 10^3} \cdot \frac{4\phi \cdot N_{OSZ}}{360}$$



Der maximal zulässige tatsächliche pU-Faktor (epU) für fettgeschmierte HI-EX®-Lager hängt von der Gleitgeschwindigkeit ab (Abb. 11). Über 2,5 m/s Dauergeschwindigkeit wird Ölschmierung empfohlen.

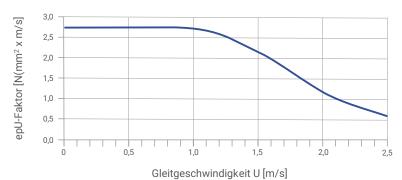



Abb. 11: Maximaler epU-Faktor bei Fettschmierung

## 5.3 pU-FAKTOR

Die Betriebslebensdauer für HI-EX® wird durch den pU-Faktor bestimmt (Für Anlaufscheiben wird die Geschwindigkeit auf den mittleren Durchmesser bezogen).

(5.3.1) 
$$[N/mm^2 \cdot m/s]$$

$$pU = p \cdot U$$

## **5.4 BELASTUNG**

Neben dem pU-Faktor gibt es zusätzliche Einflüsse durch Art und Richtung der Belastung. Dies wird durch den Korrekturfaktor für Geschwindigkeit und Belastungsart  $a_Q$  berücksichtigt (siehe Abb. 15-17).

## Art der Belastung

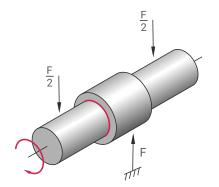



Abb. 12: Punktlast, vertikale konstante Belastung (abwärtsgerichtet), Buchse steht, Welle dreht. Das Schmiermittel fließt in den belectedes Bersieh

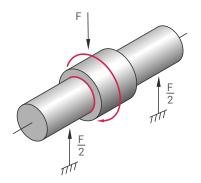



Abb. 13: Umfangslast, rotierende Belastung, Welle steht, Buchse dreht sich.

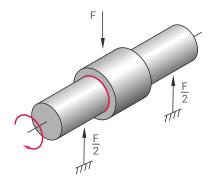



Abb. 14: Punktlast, vertikale konstante Belastung (aufwärtsgerichtet), Buchse steht, Welle dreht. Das Schmiermittel fließt aus dem belasteten Bereich weg.



## 5 Konstruktive Auslegung

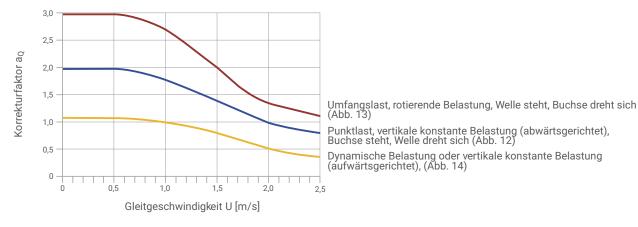



Abb. 15: Korrekturfaktor  $a_Q$  für MB HI-EX-Buchsen (unbearbeitet)

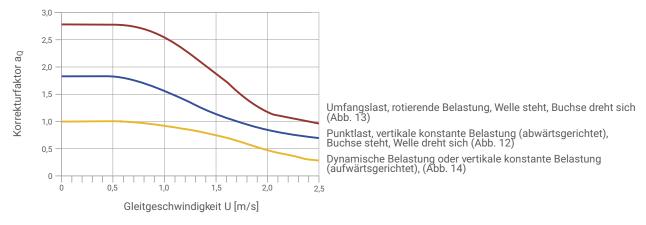



Abb. 16: Korrekturfaktor ao für PM und MB HI-EX-Buchsen (nachbearbeitet)

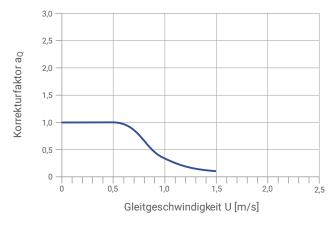



Abb. 17: Korrekturfaktor a<sub>Q</sub> für Anlaufscheiben

Hinweis: a<sub>Q</sub> = 1 für Gleitstreifen

## **5.5 TEMPERATUR**

Die Betriebslebensdauer eines HI-EX®-Lagers hängt von der Betriebstemperatur ab. Über 40 °C sinkt die Lagerleistung eines fettgeschmierten HI-EX®-Lagers, beeinflusst durch Material- und Schmierverhalten.

Für einen angenommenen pU-Faktor hängt die Betriebstemperatur von der Lagerreibung, der Umgebungstemperatur und der Wärmeableitung durch das Gehäuse ab.

Bei der HI-EX®-Lebensdauerberechnung wird dies durch den Korrekturfaktor a<sub>T</sub> (Abb. 18) berücksichtigt..

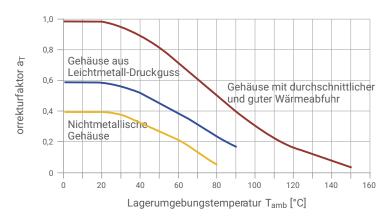



Abb. 18: Korrekturfaktor a<sub>T</sub> für HI-EX

## 5.6 GEGENLAUFFLÄCHE

Die HI-EX®-Verschleißrate wird im großen Umfang auch durch die Oberflächengüte des Gegenlaufkörpers beeinflusst. Der optimale Wert für die Gegenlauffläche ist Ra  $\leq 0.4 \, \mu m$  (geschliffen). Diesen Einfluss berücksichtigt der Korrekturfaktor für die Oberflächengüte  $a_S$  (siehe Abb. 19).

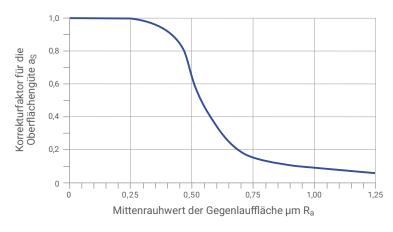



Abb. 19: HI-EX Korrekturfaktor für die Oberflächengüte  $a_{\rm S}$ 

## 5 Konstruktive Auslegung

## **5.7 LAGERGRÖßE**

Die an der Lagerstelle erzeugte Reibwärme hängt sowohl von pU als auch von der Lagergröße ab und wird durch Welle und Gehäuse abgeleitet.

Bei gleichem pU-Wert erzeugt ein Lager mit großem Durchmesser mehr Reibwärme als ein Lager mit kleinem Durchmesser. Dies wird vom Korrekturfaktor für die Lagergröße a<sub>B</sub> berücksichtigt (Abb. 20).

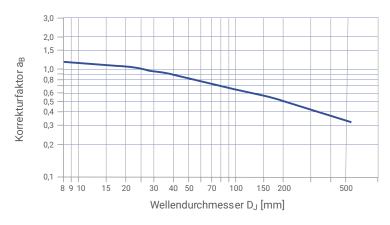



Abb. 20: Korrekturfaktor für die Lagergröße a<sub>B</sub>

Hinweis: a<sub>B</sub> = 1 für Gleitstreifen

## 5.8 BERECHNUNG DER VORAUSSICHTLICHEN LEBENSDAUER BEI FETTSCHMIERUNG

## Lagerkenngrößen

| BUCHSEN                        | ANLAUFSCHEIBEN                  | GLEITSTREIFEN | EINHEIT |
|--------------------------------|---------------------------------|---------------|---------|
| Buchsen-Inenn-Ø D <sub>i</sub> | Scheiben-Außen-Ø Do             | Länge L       | [mm]    |
| Buchsenbreite B                | Scheiben-Innen-Ø D <sub>i</sub> | Weite W       | [mm]    |

## **Operating Conditions**

| Belastung                            | F                            | [N]                  |
|--------------------------------------|------------------------------|----------------------|
| Konstante Drehbewegung               | N                            | [1/min]              |
| Schwenkfrequenz                      | Nosc                         | [1/min]              |
| Schwenkwinkel                        | φ                            | [°]                  |
| Grenzwert der spezifischen Belastung | siehe Tabelle 5, Seite 15    | [N/mm <sup>2</sup> ] |
| Korrekturfaktor a <sub>Q</sub>       | siehe Abb. 15 - 17, Seite 18 | [-]                  |
| Korrekturfaktor a <sub>T</sub>       | siehe Abb. 18, Seite 19      | [-]                  |
| Korrekturfaktor a <sub>S</sub>       | siehe Abb. 19, Seite 19      | [-]                  |
| Korrekturfaktor a <sub>B</sub>       | siehe Abb. 20, Seite 20      | [-]                  |
|                                      |                              |                      |

Berechnen von p aus den Gleichungen in "5.1" auf Seite 15.

Berechnen von U aus den Gleichungen in "5.2" auf Seite 16.

Berechnen von pU aus den Gleichungen in "5.3" auf Seite 17.

### Hochlastfaktor a<sub>E</sub>

(5.8.1) 
$$a_E = \frac{p_{lim} - p}{p_{lim}}$$

$$p_{lim} \text{ siehe Tabelle 5, Seite 15}$$

### Anmerkung:

Wenn  $a_E > 10000$ , oder  $a_E < 0$ , ist das Lager überlastet.

## Effektiver pU-Faktor epU

(5.8.2) 
$$epU = \frac{a_E \cdot pU}{a_B}$$

#### Anmerkung:

Überprüfen, ob epU kleiner ist als der Grenzwert, der durch die Gleitgeschwindigkeit U vorgegeben ist (Abb. 11). Ist dies nicht der Fall, muss die Lagerbreite vergrößert werden oder es ist Dauerschmierung vorzusehen.

### Betriebslebensdauer

Wenn epU ≤ 1,0, dann ist

(5.8.3) [h] 
$$L_{H} = \frac{3000}{\text{epU}} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$$

Wenn epU > 1,0, dann ist

(5.8.4) [h] 
$$L_{H} = \frac{3000}{(epU)^{2/4}} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$$

### Geschätztes Nachschmierintervall

(5.8.5) 
$$L_{RG} = \frac{L_H}{2}$$

### **Oszillierende Bewegung**

Anzahl der Belastungszyklen

(5.8.6) [-] 
$$Z_{T} = L_{RG} \cdot n_{osc} \cdot 60 \cdot (R+2)$$

### **Dynamische Belastung**

Anzahl der dynamischen Lastwechsel

(5.8.7) [-]
$$C_{T} = L_{RG} \cdot C \cdot 60 \cdot (R + 2)$$

R = Anzahl der erforderlichen Nachschmierintervalle.

Prüfen, ob  $Z_T$  (oder  $C_T$ ) kleiner ist als die Anzahl der Schwenkbewegungen Q (Abb. 9) für die tatsächliche spezifische Belastung p.

Wenn  $Z_T$  (oder  $C_T$ ) > Q, wird  $L_H$  begrenzt durch Ermüdungsschäden nach Q Schwenkbewegungen.

Wenn  $Z_T$  (oder  $C_T$ ) < Q, wird  $L_H$  begrenzt durch Verschleiß nach  $C_T$  Belastungszyklen.

Wenn  $L_H$  oder  $Z_T$  ( $C_T$ ) nicht ausreichend sind bzw. R zu häufig, muss  $D_i$  oder B vergrößert werden bzw. Tropföl oder Dauerschmierung vorgesehen werden.

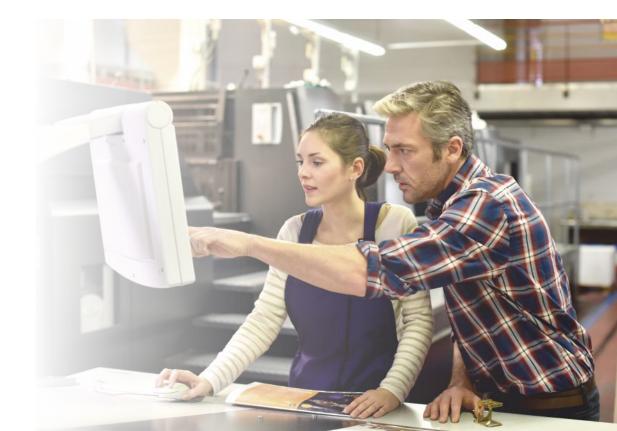
## 5 Konstruktive Auslegung

## **5.9 BERECHNUNGSBEISPIELE**

## **PM zylindrische Buchse**

| Gegeben:  |                                                    |                                    |                        |  |  |
|-----------|----------------------------------------------------|------------------------------------|------------------------|--|--|
| Belastung | Konstante Belastung                                | Innen-Ø D <sub>i</sub>             | 40 mm                  |  |  |
|           | Richtung abwärts                                   | Breite B                           | 30 mm                  |  |  |
| Welle     | Stahl, R <sub>a</sub> = 0,4 µm<br>Temperatur 85 °C | Lagerkraft F<br>Drehzahl N         | 20.000 N<br>30 · 1/min |  |  |
| Gehäuse   | Leichtmetall schlecht                              | Leichtmetall schlechte Wärmeabfuhr |                        |  |  |

| Berechnungskonstanten und Korrekturfaktoren    |                        |                       |  |  |  |  |
|------------------------------------------------|------------------------|-----------------------|--|--|--|--|
| Max. spezifische Belastung p <sub>lim</sub>    | 81,5 N/mm <sup>2</sup> | (Tabelle 5, Seite 15) |  |  |  |  |
| Korrekturfaktor a <sub>T</sub>                 | 0,2                    | (Abb. 18, Seite 19)   |  |  |  |  |
| Korrekturfaktor Gegenlauffläche a <sub>S</sub> | 0,85                   | (Abb. 19, Seite 19)   |  |  |  |  |
| Korrekturfaktor a <sub>B</sub> für Ø 40        | 0,95                   | (Abb. 20, Seite 20)   |  |  |  |  |
| Korrekturfaktor für PM Buchsen a <sub>Q</sub>  | 1,8                    | (Abb. 16, Seite 18)   |  |  |  |  |


| Berechnung                                         | siehe               | Wert                                                                                                                                                               |
|----------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spezifische<br>Belastung p<br>[N/mm²]              | (5.1.1)<br>Seite 15 | $p = \frac{F}{D_i \cdot B} = \frac{20.000}{40 \cdot 30} = 16,67$                                                                                                   |
| Gleitgeschwindig-<br>keit U [m/s]                  |                     | $U = \frac{D_i \cdot \pi \cdot N}{60 \cdot 10^3} = \frac{40 \cdot 3,14 \cdot 30}{60 \cdot 10^3} = 0,063$                                                           |
| Hochlastfaktor a <sub>E</sub><br>[-] muss > 0 sein | (5.8.1)<br>Seite 21 | $a_E = \frac{p_{lim}}{p_{lim} - p} = \frac{81,5}{81,5 - 16,67} = 1,25$                                                                                             |
| epU-Faktor [-]                                     | (5.8.2)<br>Seite 21 | $epU = \frac{a_E \cdot pU}{a_B} = \frac{1,25 \cdot 16,67 \cdot 0,063}{0,95} = 1,328$                                                                               |
| Lebensdauer<br>L <sub>H</sub> [h]<br>für epU > 1   | (5.8.4)<br>Seite 21 | $L_{H} = \frac{3000}{\text{epU}^{2.4}} \cdot \text{a}_{Q} \cdot \text{a}_{T} \cdot \text{a}_{S}$ $= \frac{3000}{1,382^{2.4}} \cdot 1,8 \cdot 0,2 \cdot 0,85 = 434$ |
| L <sub>RG</sub> [h]                                | (5.8.5)<br>Seite 21 | $L_{RG} = \frac{L_H}{2} = \frac{434}{2} = 217$                                                                                                                     |

## **PM zylindrische Buchse**

| Gegeben:  |                                                    |                            |                        |
|-----------|----------------------------------------------------|----------------------------|------------------------|
| Belastung | Konstante Belastung                                | Innen-Ø D <sub>i</sub>     | 100 mm                 |
|           | Richtung aufwärts                                  | Breite B                   | 60 mm                  |
| Welle     | Stahl, R <sub>a</sub> = 0,3 µm<br>Temperatur 80 °C | Lagerkraft F<br>Drehzahl N | 45.000 N<br>35 · 1/min |
|           | Gute Wärmeabfuhr                                   |                            |                        |

| Berechnungskonstanten und Korrekturfaktoren       |                      |                       |  |  |  |
|---------------------------------------------------|----------------------|-----------------------|--|--|--|
| Max. spezifische Belastung p <sub>lim</sub> 40 °C | 90 N/mm <sup>2</sup> | (Tabelle 5, Seite 15) |  |  |  |
| Korrekturfaktor a <sub>T</sub>                    | 0,5                  | (Abb. 18, Seite 19)   |  |  |  |
| Korrekturfaktor Gegenlauffläche a <sub>S</sub>    | 1,0                  | (Abb. 19, Seite 19)   |  |  |  |
| Korrekturfaktor a <sub>B</sub> für Ø 100          | 0,65                 | (Abb. 20, Seite 20)   |  |  |  |
| Korrekturfaktor für PM Buchsen a <sub>Q</sub>     | 1,0                  | (Abb. 16, Seite 18)   |  |  |  |

| Berechnung                                         | siehe               | Wert                                                                                                                                  |
|----------------------------------------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| Spezifische<br>Belastung p<br>[N/mm²]              | (5.1.1)<br>Seite 15 | $p = \frac{F}{D_i \cdot B} = \frac{45.000}{100 \cdot 60} = 7,5$                                                                       |
| Gleitgeschwindig-<br>keit U [m/s]                  | (5.2.1)<br>Seite 16 | $U = \frac{D_i \cdot \pi \cdot N}{60 \cdot 10^3} = \frac{100 \cdot 3,14 \cdot 35}{60 \cdot 10^3} = 0,183$                             |
| Hochlastfaktor a <sub>E</sub><br>[-] muss > 0 sein | (5.8.1)<br>Seite 21 | $a_E = \frac{p_{lim}}{p_{lim} - p} = \frac{90}{90 - 7,5} = 1,091$                                                                     |
| epU-Faktor [-]                                     | (5.8.2)<br>Seite 21 | epU = $\frac{a_E \cdot pU}{a_B} = \frac{1,091 \cdot 7,5 \cdot 0,183}{0,65} = 2,307$                                                   |
| Lebensdauer<br>L <sub>H</sub> [h]<br>für epU > 1   | (5.8.4)<br>Seite 21 | $L_{H} = \frac{3000}{epU^{2,4}} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$ $= \frac{3000}{2,307^{2,4}} \cdot 1,0 \cdot 1,0 \cdot 0,5 = 202$ |
| L <sub>RG</sub> [h]                                | (5.8.5)<br>Seite 21 | $L_{RG} = \frac{L_H}{2} = \frac{202}{2} = 101$                                                                                        |



## MB zylindrische Buchse

| Gegeben:  |                                                       |                                               |                         |
|-----------|-------------------------------------------------------|-----------------------------------------------|-------------------------|
| Belastung | Konstante Belastung                                   | Innen-Ø D <sub>i</sub>                        | 80 mm                   |
|           | Richtung abwärts                                      | Breite B                                      | 40 mm                   |
| Welle     | Stahl, R <sub>a</sub> = 0,3 µm<br>Umgebungstemp. 85°C | Lagerkraft F<br>Schwenkfreq. n <sub>osz</sub> | 200.000 N<br>1,11·1/min |
| Gehäuse   | Leichtmetall schlechte<br>Wärmeabfuhr                 | Schwenkwinkel φ                               | 20°                     |

| Berechnungskonstanten und Korrekturfaktoren                                |      |                     |  |  |  |
|----------------------------------------------------------------------------|------|---------------------|--|--|--|
| Max. spezifische Belastung p <sub>lim</sub> 140 N/mm² (Tabelle 5, Seite 15 |      |                     |  |  |  |
| Korrekturfaktor a <sub>T</sub>                                             | 0,6  | (Abb. 18, Seite 19) |  |  |  |
| Korrekturfaktor Gegenlauffläche as                                         | 1,0  | (Abb. 19, Seite 19) |  |  |  |
| Korrekturfaktor a <sub>B</sub> für Ø 80                                    | 0,75 | (Abb. 20, Seite 20) |  |  |  |
| Korrekturfaktor für MB Buchsen a <sub>Q</sub>                              | 1,8  | (Abb. 16, Seite 18) |  |  |  |

| Berechnung                                         | siehe               | Wert                                                                                                                                                            |
|----------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spezifische<br>Belastung p<br>[N/mm²]              | (5.1.1)<br>Seite 15 | $p = \frac{F}{D_i \cdot B} = \frac{200.000}{80 \cdot 40} = 62,5$                                                                                                |
| Gleitgeschwindig-<br>keit U [m/s]                  |                     | $U = \frac{D_i \cdot \pi}{60 \cdot 10^3} \cdot \frac{4\phi \cdot N_{osc}}{360}$ $= \frac{80 \cdot \pi}{60.000} \cdot \frac{4 \cdot 20 \cdot 1,11}{360} = 0,001$ |
| Hochlastfaktor a <sub>E</sub><br>[-] muss > 0 sein |                     | $a_E = \frac{p_{lim}}{p_{lim} - p} = \frac{140}{140 - 62,5} = 1,806$                                                                                            |
| epU-Faktor [-]                                     | (5.8.2)<br>Seite 21 | epU = $\frac{a_E \cdot pU}{a_B}$ = $\frac{1,806 \cdot 62,5 \cdot 0,001}{0,75}$ = 0,151                                                                          |
| Lebensdauer<br>L <sub>H</sub> [h]<br>für epU > 1   | (5.8.3)<br>Seite 21 | $L_{H} = \frac{3000}{\text{epU}} \cdot a_{Q} \cdot a_{T} \cdot a_{S}$ $= \frac{3000}{0,151} \cdot 1,8 \cdot 0,6 \cdot 1,0 = 21.456$                             |
| L <sub>RG</sub> [h]                                | (5.8.5)<br>Seite 21 | $L_{RG} = \frac{L_H}{2} = \frac{21.456}{2} = 10.728$                                                                                                            |
| Z <sub>T</sub> [-]                                 | (5.8.6)<br>Seite 21 | $Z_T = L_{RG} \cdot N_{osc} \cdot 60 \cdot (R + 2)$<br>= 10.728 \cdot 1,11 \cdot 60 \cdot 2 = 1,43 \cdot 10^6                                                   |
|                                                    |                     | 62,5 = 1,43 · 10 <sup>6</sup> ; Z <sub>T</sub> > Q, Das Lager<br>nach 1,43 · 10 <sup>6</sup> Schwenkbewegung                                                    |

## Anlaufscheibe

| Gegeben:             |                                                    |                            |                        |
|----------------------|----------------------------------------------------|----------------------------|------------------------|
| Belastung            | Konstante Belastung                                | Innen-Ø D <sub>i</sub>     | 40 mm                  |
|                      | Richtung abwärts                                   | Außen-Ø Do                 | 78 mm                  |
| Gegenlauf-<br>fläche | Stahl, R <sub>a</sub> = 0,2 µm<br>Temperatur 50 °C | Lagerkraft F<br>Drehzahl n | 50.000 N<br>25 · 1/min |
| Gehäuse              | Leichtmetall schlechte                             | e Wärmeabfuhr              |                        |

| Berechnungskonstanten und Korrekturfaktoren    |                      |                      |  |  |  |
|------------------------------------------------|----------------------|----------------------|--|--|--|
| Max. spezifische Belastung p <sub>lim</sub>    | 90 N/mm <sup>2</sup> | Tabelle 5, Seite 15) |  |  |  |
| Korrekturfaktor a <sub>T</sub> für 50°C        | 0,5                  | (Abb. 18, Seite 19)  |  |  |  |
| Korrekturfaktor Gegenlauffläche a <sub>S</sub> | 1,0                  | (Abb. 19, Seite 19)  |  |  |  |
| Korrekturfaktor a <sub>B</sub> für Ø 40        | 0,95                 | (Abb. 20, Seite 20)  |  |  |  |
| Korrekturfaktor Anlaufscheiben a <sub>Q</sub>  | 1,0                  | (Abb. 17, Seite 18)  |  |  |  |

| Berechnung                                         | siehe               | Wert                                                                                                                                                             |
|----------------------------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spezifische<br>Belastung p<br>[N/mm²]              | (5.1.1)<br>Seite 15 | $p = \frac{4 \cdot F}{\pi \cdot (D_0^2 - D_i^2)} = \frac{4 \cdot 50.000}{\pi \cdot (78^2 - 40^2)} = 14.2$                                                        |
| Gleitgeschwindig<br>keit U [m/s]                   |                     | $U = \frac{\frac{D_0 + D_i}{2} \cdot \pi \cdot N}{60 \cdot 10^3}$                                                                                                |
|                                                    |                     | $=\frac{\frac{78+40}{2}\cdot\pi\cdot25}{60\cdot10^3}=0,0772$                                                                                                     |
| Hochlastfaktor a <sub>t</sub><br>[-] muss > 0 sein |                     | $a_E = \frac{p_{lim}}{p_{lim} - p} = \frac{90}{90 - 14,2} = 1,187$                                                                                               |
| epU-Faktor [-]                                     | (5.8.2)<br>Seite 21 | epU = $\frac{a_E \cdot pU}{a_B} = \frac{1,187 \cdot 14,2 \cdot 0,0772}{0,95} = 1,37$                                                                             |
| Lebensdauer<br>L <sub>H</sub> [h]<br>für epU > 1   | (5.8.4)<br>Seite 21 | $L_{H} = \frac{3000}{\text{epU}^{2.4}} \cdot \text{a}_{Q} \cdot \text{a}_{T} \cdot \text{a}_{S}$ $= \frac{3000}{1,37^{2.4}} \cdot 1,0 \cdot 0,5 \cdot 1,0 = 704$ |
| L <sub>RG</sub> [h]                                | (5.8.5)<br>Seite 21 | $L_{RG} = \frac{L_H}{2} = \frac{704}{2} = 352$                                                                                                                   |

## 6 Lagereinbau

## **6.1 ABMESSUNGEN UND TOLERANZEN**

Alle HI-EX®-Buchsen werden in Gehäuse mit der Toleranzklasse H7 eingepresst und in der Regel mit Wellen der Toleranzklasse h8 gepaart.

PM HI-EX®-Buchsen sind einbaufertig undbrauchen nach dem Einbau nicht nachbearbeitet werden.

MB HI-EX®-Buchsen können im Buchsen-Innendurchmesser auf die Toleranzklasse H7 nachbearbeitet werden. Je nach erforderlichem Laufspiel empfehlen wir Wellen der Toleranzklasse h6-h8. Ohne Nachbearbeitung können MB HI-EX®-Buchsen auch mit Wellen der Toleranzklasse d8 gepaart werden.

Um eine optimale Lagerleistung zu erreichen, ist es wichtig, das richtige Lagerspiel einzuhalten. Gehäusebohrung und Wellendurchmesser müssen deshalb den Tabellenvorgaben entsprechen. Für den Fall, dass sich das Aufnahmegehäuse elastisch aufweitet, und sich somit der Buchseninnendurchmesser größer als berechnet einstellt, sollte der Gehäusdurchmesser verringert, oder der Wellendurchmesser vergrößert werden.

## **6.2 TOLERANZEN FÜR KLEINSTSPIELE**

### **Fettschmierung**

Das Kleinstspiel für einen zufriedenstellenden HI-EX®-Einsatz ist abhängig vom pU-Faktor, der Gleitgeschwindigkeit und der Umgebungstemperatur.

Jede Kenngröße einzeln oder eine Kombination aller kann das Radialspiel verkleinern, da sich die HI-EX®-Polymerschicht nach innen ausdehnt (Wärmedehnung). Dies ist zu kompensieren.

Abb. 21 gibt das minimale Radialspiel über dem Durchmesser bei einer Temperatur von 20 °C an. Zeigt die abgestufte Linie einen Laufspielwechsel für einen bestimmten Wellendurchmesser an, ist der untere Wert einzusetzen. Die zusätzlichen Geraden geben das kleinste zulässige Radialspiel für verschiedene pUu-Werte vor.

Die Berechnung des pU-Faktors ist in Kapitel 5.3 aufgeführt. Der Korrekturfaktor für die Gleitgeschwindigkeit u, für U >0,5 m/s ist Abb. 22 zu entnehmen. Liegt das Laufspiel für einen bestimmten pUu-Faktor (Abb. 21) unter der abgestuften Linie, kann die empfohlene Standardwelle verwendet werden.

Falls der Wert größer ist, muss der Wellendurchmesser reduziert werden, um das Betriebspiel entsprechend der vertikalen Achse in Abb. 21 zu erreichen.

Bei hohen Belastungen und niedrigen Gleitgeschwindigkeiten ist es möglich, eine zufriedenstellende Lagerleistung auch mit Betriebsspielen zu erhalten, die kleiner sind als vorgegeben. In diesen Fällen sind jedoch Vorversuche notwendig.

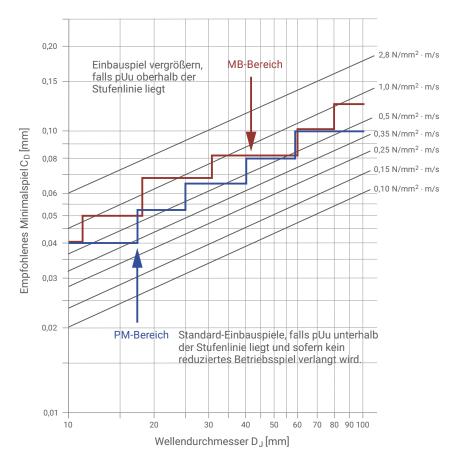



Abb. 21: Minimales Einbauspiel für PM (einbaufertig) und MB HI-EX-Buchsen (nachbearbeitet auf H7)

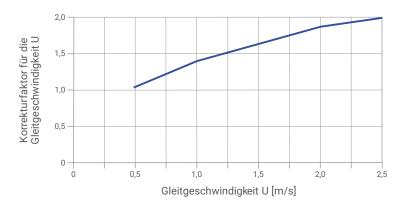
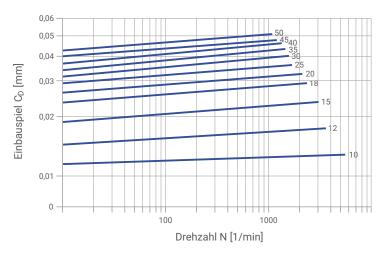




Abb. 22: Korrekturfaktor für die Gleitgeschwindigkeit U

## 6 Lagereinbau

## Flüssigkeitsschmierung

Abb. 23 zeigt das minimale Einbauspiel für verschiedene Durchmesser und Drehzahlbereiche für Buchsen, die im hydrodynamischen oder Mischreibungsgebiet arbeiten. Für Buchsen die im minimalen Spielbereich arbeiten werden Vorversuche empfohlen.



Für Geschwindigkeiten über 3 m/s sind zusätzliche Berechnungen erforderlich

Abb. 23: Minimale Einbauspiele für HI-EX-Buchsen mit Durchmesser  $D_i$  10 - 50 mm

## Wärmedehnung

Bei Hochtemperatur-Anwendungen sollte das Betriebsspiel laut Vorgabe aus Abb. 24 vergrößert werden.

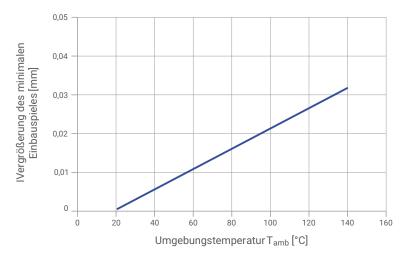



Abb. 24: Empfohlene Vergrößerung des Einbauspieles

Gehäuse aus Nichteisenmaterialien erfordern verkleinerte Gehäusebohrungsdurchmesser (siehe Tabelle 6), um das Einpressübermaß des Buchsenaußendurchmessers zu erhöhen und somit den Festsitz zu gewährleisten. Die Welle ist zusätzlich zu den Werten aus Abb. 24 um den gleichen Betrag, wie die Gehäusebohrung zu reduzieren.

| GEHÄUSEMATERIAL        | REDUZIERUNG DER GEHÄUSEBOHRUNG<br>PRO 100°C TEMPERATURANSTIEG | REDUZIERUNG DES WELLENDURCHMESSERS<br>PRO 100°C TEMPERATURANSTIEG |
|------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
| Aluminiumlegierungen   | 0,1 %                                                         | 0,1 % + Werte aus Abb. 24                                         |
| Legierung auf Kupferba | nsis 0,05 %                                                   | 0,05 % + Werte aus Abb. 24                                        |
| Stahl und Grauguss     | _                                                             | Werte aus Abb. 24                                                 |
| Legierung auf Zinkbasi | s 0,15 %                                                      | 0,15 % + Werte aus Abb. 24                                        |

Tabelle 6: Berücksichtigung von Wärmedehnung

## 6.3 GESTALTUNG DER GEGENLAUFFLÄCHEN

konventionellen Gegenlaufwerkstoffen eingesetzt werden. Gehärtete Stahlwellen sind nicht notwendig. Gehärtete Stahlwellen sind in der Regel nicht erforderlich, es sei denn, abrasive Partikel können in die Lagerstelle eindringen oder die Betriebslebensdauer soll über 2000 Stunden betragen. In diesen Fällen empfehlen wir eine Mindesthärte von 350 HRB für die Welle.

Die Gegenlauffläche sollte auf einen Mittenrauhwert von  $R_a \leq 0.4~\mu m$  geschliffen werden. Der letzte Bearbeitungsgang der Gegenlauffläche sollte vorzugsweise die gleiche Richtung haben, wie die Bewegungsrichtung relativ zur Lageroberfläche.

Normalerweise wird HI-EX® gegen Stahlwellen bzw. axiale Flächen aus Stahl eingesetzt. Bei feuchter oder korrosiver Umgebung empfehlen wir Wellen aus rostfreiem Stahl oder hartchrombeschichtete Stähle. Besonders bei Wechsellasten muss auf eine gute Haftung der Beschichtung geachtet werden.

Axiale Anlaufflächen bzw. Wellenenden müssen über die HI-EX®-Oberfläche hinausragen, um ein Einlaufen zu vermeiden. Diese Gegenlaufflächen sind ohne Nuten oder Flachstellen auszuführen. Damit die Kunststoff-Laufschicht nicht beschädigt wird, müssen scharfe Kanten vermieden werden. Wellenenden sollten angefast werden.

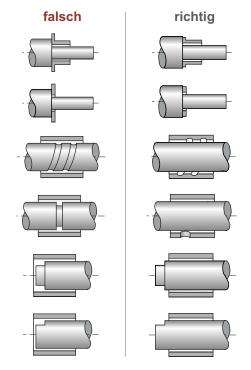



Abb. 25: Gestaltung der Gegenlaufkörper

## 6 Lagereinbau

## **6.4 MONTAGE**

## **Wichtiger Hinweis:**

Die HI-EX®-Laufschicht darf während der Montage nicht beschädigt werden.

## Einpressen von Buchsen

Montage mit Stufendorn (einsatzgehärteter C-Stahl) siehe Abb. 26. Um Beschädigungen zu vermeiden, ist zu beachten:

- Gehäusedurchmesser entsprechend den Empfehlungen
- Fase 0,8 x 15°-30° am Gehäuse
- Buchse parallel zur Gehäusebohrung D<sub>H</sub> ansetzen
- Buchsenaußendurchmesser leicht ölen

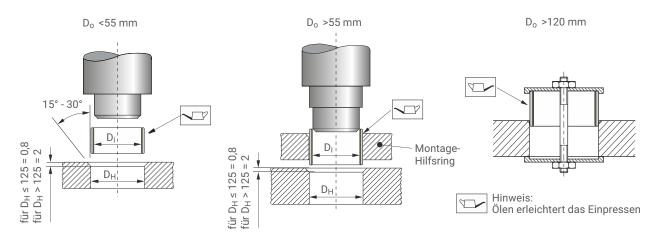



Abb. 26: Buchsen einpressen

## Einpresskräfte

Abb. 27 gibt Richtwerte für die erforderlichen maximalen Einpresskräfte zum korrekten Einbau von HI-EX®-Buchsen.



Abb. 27: Maximale Einpresskräfte F<sub>i</sub>

## **Fluchtung**

Genaue Fluchtung ist für alle Lageranwendungen wichtig. Beim Einsatz von HI-EX®-Lagern sollten Fluchtungsfehler den Wert 0,020 mm nicht übersteigen (siehe Abb. 28). Dies gilt über die Länge einer Buchse (oder zwei Buchsen) oder über den Außendurchmesser einer Anlaufscheibe.

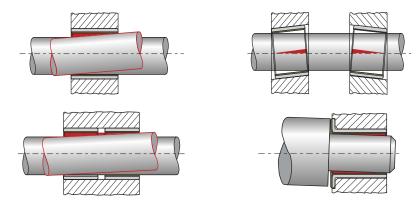



Abb. 28: Fluchtung

## **Abdichten von Lagerstellen**

Obwohl HI-EX® eine gute Fähigkeit besitzt, Verschmutzungspartikel einzubetten, ist es zweckmäßig, bei abrasiver Verschmutzung die Lagerstellen entsprechend Abb. 29 abzudichten.

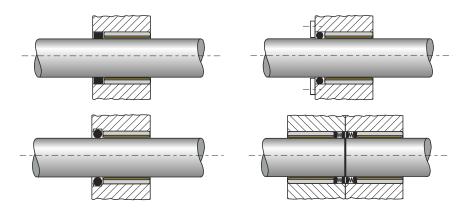



Abb. 29: Abdichten von Lagerstellen

## **Axialführung**

Wenn axiale Führungsaufgaben notwenig sind, empfehlen wir grundsätzlich, HI-EX®-Anlaufscheiben in Verbindung mit HI-EX®-Buchsen einzusetzen. Der Abrieb von falsch montierten Anlaufscheiben (Axiallager) kann in die angrenzende HI-EX®-Buchse eindringen und sich dadurch ungünstig auf die Lebensdauer der HI-EX®-Buchse auswirken.

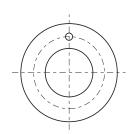
## 6 Lagereinbau

### Montage von Anlaufscheiben

HI-EX®-Anlaufscheiben werden am Außendurchmesser in einer Eindrehung geführt (Abb. 30). Der Innendurchmesser darf die Welle nicht berühren. Der Durchmesser der Eindrehung sollte nach der Toleranzklasse  $D_{10}$  angefertigt werden.

Falls keine Eindrehung vorgesehen werden kann, können Scheiben wie folgt gehalten werden:

mit zwei Haltestiften


- mit zwei Halteschrauben
- durch Ankleben

### Hinweis:

- Haltestifte bis mindestens 0,25 mm unterhalb der Oberkante Laufschicht.
- Schrauben 0,25 mm tiefer als Oberkante Laufschicht versenken.
- HI-EX nicht höher als 250 °C erhitzen.
- Hersteller von Industrieklebern konsultieren hinsichtlich Typ und Verarbeitung.

- Laufschicht abdecken, um das Anhaften von Kleber zu vermeiden.
- Der Scheibeninnendurchmesser darf die Welle nach der Montage nicht berühren.
- Sicherstellen, dass die Scheibe mit der richtigen Seite anliegt.





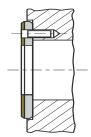
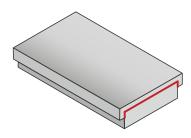



Abb. 30: Fixierung von Anlaufscheiben


#### Gleitstreifen

Die Befestigung von HI-EX®-Gleitstreifen bei der Anwendung als Geradführung erfolgt alternativ:

mit Senkschrauben

- mit Industrieklebern

- durch Formschluss It. Abb. 31



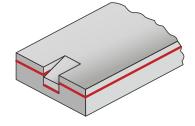



Abb. 31: Fixierung von Gleitstreifen durch Formschluss

## 7 Bearbeitung

## 7.1 SPANENDE BEARBEITUNG

Die PEEK-Laufschicht des HI-EX®-Materials lässt sich gut spanend bearbeiten, wie. z. B. Messing. Aufgrund der inneren Elastizität der Laufschicht können die Ränder der Schmiertaschen zu Grat- und Flusenbildung neigen.

Abhilfe: Spanform beim Bearbeiten der Laufschicht als Band anstelle feinfadenförmig. Sofern die Laufschicht bearbeitet wird, sollte die Bearbeitungstiefe nicht mehr als 0,125 mm betragen, um das Schmierstoffvolumen in den Taschen nicht wesentlich zu reduzieren.

HI-EX® kann, gerieben geräumt oder ausgedreht/ausgespindelt werden. Als Bearbeitungswerkstoff eignet sich HS-Stahl oder Hartmetall. Für gute Werkzeug-Standzeiten sind Diamantwerkzeuge erforderlich.

## 7.2 AUSSPINDELN

Abb. 32 zeigt den empfohlenen Drehstahl.

- Einstellung: 90° zur Vorschubrichtung.
   Spitzenradius >1,5 mm.
- Seitenspanwinkel:
   30° ergibt bandförmigen Spanverlauf.
- Schnittgeschwindigkeit:
   2,0 4,5 m/s.

- Vorschub:
   0,05 0,025 mm für Schnittiefe von 0,125 mm
   (Niederer Vorschub für höhere Schnittgeschwindigkeit).
- Ausreichende Oberflächengüten können ohne Schneidölverwendung erzielt werden.
- Späneabfuhr durch Druckluft.
- Kühlmitteleinsatz ist ohne Nachteil.

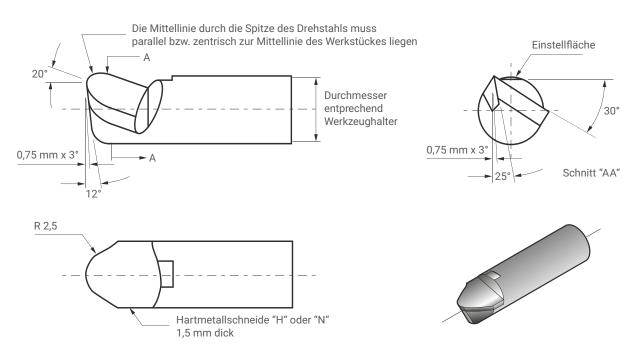
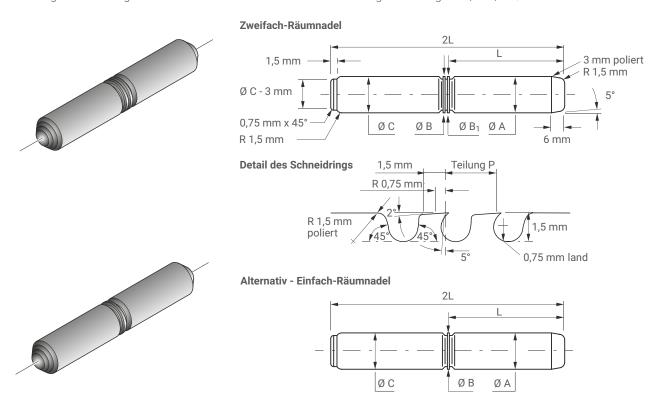



Abb. 32: Drehstahl für HI-EX


## 7 Bearbeitung

## 7.3 REIBEN

HI-EX® kann mit einer nachstellbaren geradzahnigen Handreibahle nachbearbeitet werden. Die Reibahlen müssen scharf und hart sein (Diamantbeschichtet), Schnittiefe 0,025 - 0,05 mm bei niedrigem Vorschub. Maschinenreibahle mit Schnittgechwindigkeit von ca. 0,05 m/s bei gleichen Schnitttiefen und Vorschüben wie beim Ausspindeln.

## 7.4 RÄUMEN

Abb. 33 zeigt Räumnadelgeometrien für Durchmesser bis 65 mm. Schnittgeschwindigkeit 0,1 - 0,5 m/s trocken.



MIN. LÄNGE DES

B + 6 + Buchsenabstand

FÜHRUNGSDORNES L

Einzelbuchse 2 oder mehr

hintereinander

| BUCHSE<br>Von | NBREITE B<br>BIS | PITCH P |
|---------------|------------------|---------|
| 10            | 13               | 3       |
| 13            | 20               | 4       |
| 20            | 30               | 5       |
| 30            | 50               | 5,5     |
| 50            | 70               | 6       |
| 70            | 95               | 7       |
| 95            | 130              | 8       |

Abb. 33: Räumnadelgeometrien für HI-EX

| DURC             | CHMESSER                                                    |                  |
|------------------|-------------------------------------------------------------|------------------|
| ØA               | min. Buchseninnen-Ø<br>D <sub>i,a</sub> min nach Einbau     | +0,013<br>+0     |
| ØВ               | Nenndurchmesser D <sub>i</sub>                              | +0,038<br>+0,025 |
| ØС               | Nenndurchmesser D <sub>i</sub>                              | +0,015<br>+0,005 |
|                  | Buchseninnen-Ø = D <sub>o mi</sub><br>ungsnennmaß = min. Bo |                  |
| Ø B <sub>1</sub> | * Nenndurchmesser D <sub>i</sub>                            | -0,065<br>-0,076 |
|                  |                                                             |                  |

<sup>\*</sup> Erste Schneide der Zweifach-Räumnadel

Einfachräumnadeln werden für Buchsenbreiten < 25 mm verwendet. Zweifachräumnadeln für Buchsenbreiten ≥ 25 mm bzw. zwei oder mehrere nebeneinander angeordnete Buchsen.

Wenn Sonderräumnadeln für spezifische Formen erforderlich sind, beachten Sie:

- Führung der Räumnadel durch Führungsdorne/Schultern vor und nach dem Schneidring sicherstellen.

- zwei hintereinander mit Abstand eingebaute Buchsen erfordern Vor- und Nachführungen die länger sind als der Buchsenabstand.
- Sonderführungen außerhalb des Werkstückes sind auch möglich.
- Räumkräfte bei Großbuchsen werden durch axiale Entlastungsnuten in den Führungsdorn/Schultern reduziert
- Räumen bewirkt nur dann Konzentrizität und Parallelität, wenn externe Führungen vorhanden sind, sonst folgt die Räumnadel der ursprünglichen Fluchtung der Gehäusebohrung.
- Buchsen mit D<sub>i</sub> > 60 mm erfordern generell eine äußere Führung der Räumnadel.

## 7.5 SCHWINGRÄUMEN

Der Einsatz von Einfach-Räumnadeln mit ca. 50 Hz Vorschubfrequenz ist möglich. Fasenspanwinkel:  $1,5^{\circ}$  x 0,5 mm. Eine Schnittiefe von 0,25 mm mit einer durchschnittlichen Schnittgeschwindigkeit von 0,15 m/s ist akzeptabel. Eine erzeugte Oberfläche mit  $R_a < 0,8$   $\mu$ m oder besser, ist ausreichend.

### 7.6 NACHBEARBEITUNG VON FERTIGEN LAGERN

### Kürzen bzw. Teilen

Bei der Nachbearbeitung von HI-EX®-Gleitlagern sind keine besonderen Maßnahmen erforderlich.

Um Gratbildungen an der Laufschichtseite zu vermeiden, sollte die Bearbeitungsrichtung von der Laufschichtseite zum Stahlrücken erfolgen. Bei der Bearbeitung von der Stahlseite her ist ein minimaler Schneiddruck empfehlenswert.

Jegliche Stahl- oder Bronzepartikel, die in die Laufschicht eingedrückt werden, sowie alle Grate müssen entfernt werden.

## 7.7 BOHREN VON SCHMIERLÖCHERN

Die Buchsen müssen am Innendurchmesser unterstützt werden, um Verformungen durch den Bohrdruck zu vermeiden.

## 7.8 SCHNEIDEN VON STREIFEN

HI-EX®-Streifen können mit den nachfolgenden Methoden auf Größe geschnitten werden, wobei Maßnahmen gegen das Verkratzen der Laufschicht und gegen die Verformung notwendig sind:

- Horizontalfräsen mit Seiten-, Stirn- oder Scheibenfräsern
- Tafel-/Schlagscheren
- Stanzen mit oder ohne Verlustschnitt
- Rollenscheren (Schneidstrecke)
- Laserschneiden
- Wasserstrahlschneiden

## 8 Oberflächenbehandlung

#### HI-EX®-Material

Der HI-EX®-Stahlrücken kann mit fast allen konventionellen metallischen Überzügen gegen Korrosion geschützt werden:

- Zink
- Nickel
- Hartchrom
- Zink Nickel
- Chemisches Vernickeln

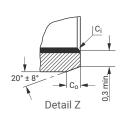
Bei Schichtdicken >5 µm muss die Gehäusebohrung um den Wert: 2 x galvanische Schichtdicke vergrößert werden, der Innendurchmesser der Buchse wird somit nach der Montage nicht verändert.

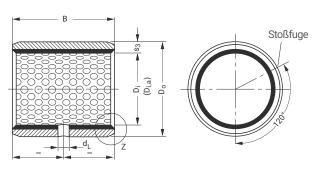
Im Fall elektrolytischer Angriffe sind Versuche durchzuführen, um die Verträglichkeit aller Materialien der Lagerumgebung nachzuweisen.

### Gegenlaufflächen

Die Gegenlaufflächen können mit Korrosionsschutzschichten versehen werden. Dabei sind die empfohlenen Wellentoleranzen und Oberflächenrauheiten auch bei den metallischen Überzügen einzuhalten.

### Bestellbeispiele


Die Bestellbeispiele gelten für die Bestellnummern in den folgenden Tabellen der Standardabmessungen (diese Teile sind nicht ab Lager lieferbar!).


- Einbaufertige HI-EX®-Buchse mit Innendurchmesser D₁ = 20 mm und einer Breite B = 15 mm: PM 2015 HI-EX
- Nachbearbeitbare HI-EX®-Buchse mit Innendurchmesser D<sub>i</sub> = 20 mm und einer Breite B = 15 mm, mit glatter Laufschicht für hydrodynamische Anwendungen: MB2015 HI-EX (U).

## 9 Standardteile

## 9.1 PM HI-EX® ZYLINDRISCHE BUCHSEN







Dimensionen und Toleranzen nach ISO 3547 und GSP-Spezifikatioen Hinweis: Für  $D_i \le 40$  mm, Buchsenrücken mit Zinnüberzug; für  $D_i > 40$  mm, Buchsenrücken mit Kupferüberzug

## Außenfasen Co und Innenfasen Ci

| WANDDICKE<br>S <sub>3</sub> | C <sub>o</sub><br>Bearbeitet | • •           | C <sub>i</sub> (h) |  |  |
|-----------------------------|------------------------------|---------------|--------------------|--|--|
| 1                           | 0,6 ± 0,4                    | 0,6 ± 0,4     | -0,1 bis -0,5      |  |  |
| 1.5                         | $0.6 \pm 0.4$                | $0.6 \pm 0.4$ | -0.1 bis -0.7      |  |  |

| WANDDICKE             | C <sub>o</sub> | C <sub>i</sub> (b) |              |  |
|-----------------------|----------------|--------------------|--------------|--|
| <b>S</b> <sub>3</sub> | BEARBEITET     | / GEROLLT          | -1,1,7       |  |
| 2                     | $1,2 \pm 0,4$  | $1,0 \pm 0,4$      | -0,1 to -0,7 |  |
| 2.5                   | 18+06          | 12+04              | -0.2 to -1.0 |  |

- (a) = Fase Co nach Ermessen des Herstellers bearbeitet oder gerollt
- (b) = C<sub>i</sub> kann Radius oder Fase sein, in Übereinstimmung mit ISO 13715

| BESTELL NR. | NENNMAGE |       | NENNMABE WANDDICKE BREITI                                           |                         | WELLEN-Ø<br>Dj [h8] |                  | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] |                  | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb. In<br>H7 Gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER-<br>LOCH-Ø |
|-------------|----------|-------|---------------------------------------------------------------------|-------------------------|---------------------|------------------|----------------------------------|------------------|--------------------------------------------------------|-------------------------------|--------------------|
| DEGILLE MI  | Di       | Do    | max.<br>min.                                                        | max.<br>min.            |                     | max.<br>min.     |                                  | max.<br>min.     | max.<br>min.                                           | max.<br>min.                  | dL                 |
| PM0808HX    |          |       |                                                                     | 8,25<br>7,75            |                     |                  |                                  |                  |                                                        |                               | kein               |
| PM0810HX    | 8        | 10    |                                                                     | 10,25<br>9,75           |                     | 8,000<br>7,978   |                                  | 10,015<br>10,000 | 8,105<br>8,040                                         | 0,127<br>0,040                | Schmier-<br>loch   |
| PM0812HX    |          |       |                                                                     | 12,25<br>11,75          |                     |                  |                                  |                  |                                                        |                               | 10011              |
| PM1010HX    |          |       | 10,25<br>9,75<br>12,25<br>11,75<br>15,25<br>14,75<br>20,25<br>19,75 | 9,75                    |                     | 10,000           |                                  | 12,018<br>12,000 | 10,108<br>10,040                                       | 0,130<br>0,040                | 3                  |
| PM1012HX    | 10       | 12    |                                                                     | 11,75                   |                     |                  |                                  |                  |                                                        |                               | 4                  |
| PM1015HX    |          |       |                                                                     | 14,75                   |                     | 9,978            |                                  |                  |                                                        |                               |                    |
| PM1020HX    |          |       |                                                                     |                         |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1210HX    |          |       |                                                                     | 10,25<br>9,75           | h8                  | 12,000<br>11,973 | Н7                               | 14,018<br>14,000 | 12,108<br>12,040                                       | 0,135<br>0,040                | 3                  |
| PM1212HX    |          |       | 0,980<br>0,955                                                      | 12,25<br>11,75<br>15,25 |                     |                  |                                  |                  |                                                        |                               | 4                  |
| PM1215HX    | 12       | 14    |                                                                     | 14,75<br>20,25          |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1220HX    |          |       |                                                                     | 20,25<br>19,75<br>25,25 |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1225HX    |          |       |                                                                     | 24,75<br>15,25          |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1415HX    |          |       |                                                                     | 14,75<br>20,25          |                     | 14,000<br>13,973 |                                  | 16,018<br>16,000 | 14,108<br>14,040                                       |                               |                    |
| PM1420HX    | 14       | 16    |                                                                     | 19,75<br>25,25          |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1425HX    |          |       |                                                                     | 24,75<br>8,25           |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1508HX    |          | 15 17 |                                                                     | 7,75<br>10,25           |                     | 15,000<br>14,973 |                                  | 17,018<br>17,000 | 15,108<br>15,040                                       |                               | 3                  |
| PM1510HX    |          |       |                                                                     | 9,75                    |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1512HX    | 15       |       |                                                                     | 12,25<br>11,75<br>15,25 |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1515HX    |          |       |                                                                     | 14,75                   |                     |                  |                                  |                  |                                                        |                               | 4                  |
| PM1520HX    |          |       |                                                                     | 20,25<br>19,75          |                     |                  |                                  |                  |                                                        |                               |                    |
| PM1525HX    |          |       |                                                                     | 25,25<br>24,75          |                     |                  |                                  |                  |                                                        |                               |                    |

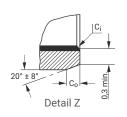
## 9 Standardteile

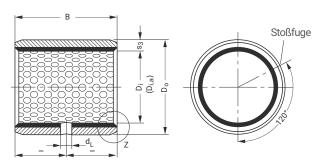
| BESTELL NR. | NENNMABE |                | WANDDICKE<br>S <sub>3</sub> |                |                | WELLEN-Ø<br>Dj[h8] |        | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb, in<br>H7 gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER-<br>LOCH-Ø |  |  |  |  |  |  |
|-------------|----------|----------------|-----------------------------|----------------|----------------|--------------------|--------|----------------------------------|--------------------------------------------------------|-------------------------------|--------------------|--|--|--|--|--|--|
| DESTELL MM. | Di       | Do             | max.<br>min.                | max.<br>min.   |                | max.<br>min.       |        | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | dL                 |  |  |  |  |  |  |
| PM1615HX    | 16       |                |                             | 15,25<br>14,75 |                |                    |        | 18,018<br>18,000                 | 16,108<br>16,040                                       | 0,135<br>0,040                |                    |  |  |  |  |  |  |
| PM1620HX    |          | 18             |                             | 20,25<br>19,75 |                | 16,000<br>15,973   |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM1625HX    |          |                | 0,980<br>0,955              | 25,25<br>24,75 |                | 10,570             |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM1815HX    | 18       | 18 20          |                             | 15,25<br>14,75 |                | 18,000<br>17,973   |        | 20,021<br>20,000                 | 18,111<br>18,040                                       |                               |                    |  |  |  |  |  |  |
| PM1820HX    |          |                |                             | 20,25<br>19,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM1825HX    |          |                |                             | 25,25<br>24,75 |                |                    |        |                                  |                                                        |                               | 4                  |  |  |  |  |  |  |
| PM2010HX    |          |                |                             | 10,25<br>9,75  |                | 20,000<br>19,967   |        |                                  |                                                        |                               | 1                  |  |  |  |  |  |  |
| PM2015HX    |          |                |                             | 15,25<br>14,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2020HX    | 20       | 23             |                             | 20,25<br>19,75 |                |                    |        | 23,021<br>23,000                 | 20,131<br>20,050                                       |                               |                    |  |  |  |  |  |  |
| PM2025HX    |          | 25,25<br>24,75 |                             | ,              |                | ,                  |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2030HX    |          |                |                             | 30,25<br>29,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2215HX    |          |                |                             | 15,25<br>14,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2220HX    | 22       | 25             |                             | 20,25<br>19,75 |                | 22,000<br>21,967   | H7     | 25,021<br>25,000                 | 22,131<br>22,050                                       | 0,164<br>0,050                |                    |  |  |  |  |  |  |
| PM2225HX    |          |                |                             | 25,25<br>24,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2230HX    |          |                | 1,475                       | 30,25<br>29,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2415HX    |          |                | 1,445                       | 15,25<br>14,75 |                | 24,000             |        | 27,021<br>27,000                 | 24,131<br>24,050                                       |                               |                    |  |  |  |  |  |  |
| PM2420HX    | 24       | 24 27          |                             | 20,25<br>19,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2425HX    |          | 2/             |                             | 25,25<br>24,75 | h8             | 23,967             |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2430HX    |          |                |                             | 30,25<br>29,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM2515HX    | 25       | 25             |                             |                |                |                    |        |                                  |                                                        | 15,25<br>14,75                |                    |  |  |  |  |  |  |
| PM2520HX    |          |                | 20                          |                | 20,25<br>19,75 |                    | 25,000 |                                  | 28,021                                                 | 25,131                        |                    |  |  |  |  |  |  |
| PM2525HX    | 25       | 28             |                             | 25,25<br>24,75 |                | 24,967             |        | 28,000                           | 25,050                                                 |                               | 6                  |  |  |  |  |  |  |
| PM2530HX    |          |                |                             | 30,25<br>29,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM283130HX  |          | 31             |                             | 30,25<br>29,75 |                |                    |        | 31,025<br>31,000                 | 28,135<br>28,050                                       | 0,168<br>0,050                | 6                  |  |  |  |  |  |  |
| PM2820HX    | 28       | 20             | 20                          | 20             | 20             | 20                 |        |                                  | 20,25<br>19,75                                         |                               | 28,000             |  |  |  |  |  |  |
| PM2825HX    |          | 32             |                             | 25,25<br>24,75 |                | 27,967             |        | 32,025<br>32,000                 | 28,155<br>28,060                                       |                               |                    |  |  |  |  |  |  |
| PM2830HX    |          |                |                             | 30,25<br>29,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM3020HX    | 30       |                |                             | 20,25<br>19,75 |                |                    |        |                                  |                                                        | 0,188<br>0,060                |                    |  |  |  |  |  |  |
| PM3025HX    |          | 30 34          | 1,970<br>1,935              | 25,25<br>24,75 |                | 30,000<br>29,967   |        | 34,025                           | 30,155<br>30,060                                       |                               |                    |  |  |  |  |  |  |
| PM3030HX    |          |                |                             | 30,25<br>29,75 |                |                    |        | 34,000                           |                                                        |                               |                    |  |  |  |  |  |  |
| PM3040HX    |          |                |                             | 40,25<br>39,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM3220HX    |          | 32 36          |                             | 20,25<br>19,75 |                | 32,000<br>31,961   |        | 36,025<br>36,000                 | 32,155<br>32,060                                       | 0,194<br>0,060                |                    |  |  |  |  |  |  |
| PM3230HX    | 20       |                |                             | 30,25<br>29,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM3235HX    | 32       |                |                             | 35,25<br>34,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |
| PM3240HX    |          |                |                             | 40,25<br>39,75 |                |                    |        |                                  |                                                        |                               |                    |  |  |  |  |  |  |

Alle Abmessungen in mm

| BESTELL NR. | NENN | IMABE          | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B                      |        | WELLEN-Ø<br>Dj [h8] |        | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>EINGEB, IN | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIEF<br>LOCH-Ø |
|-------------|------|----------------|-----------------------------|----------------------------------|--------|---------------------|--------|----------------------------------|------------------------------------------|-------------------------------|-------------------|
| DESIELL NR. | Di   | D <sub>o</sub> | max.<br>min.                | max.<br>min.                     |        | max.<br>min.        |        | max.<br>min.                     | H7 GEHÂUSE<br>max.<br>min.               | max.<br>min.                  | dı                |
| PM3520HX    |      |                |                             | 20,25<br>19,75                   |        |                     |        |                                  |                                          |                               |                   |
| PM3530HX    |      |                |                             | 30,25<br>29,75                   |        |                     |        |                                  |                                          |                               |                   |
| РМ3535НХ    | 35   | 39             |                             | 35,25<br>34,75                   |        | 35,000<br>34,961    |        | 39,025<br>39,000                 | 35,155<br>35,060                         |                               |                   |
| PM3540HX    |      |                |                             | 40,25<br>39,75                   |        |                     |        |                                  |                                          | 0,194<br>0,060                | 6                 |
| PM3550HX    |      |                |                             | 50,25<br>49,75                   |        |                     |        |                                  |                                          |                               |                   |
| РМ3635НХ    | 36   | 40             | 1,970<br>1,935              | 35,25<br>34,75                   |        | 36,000<br>35,961    |        | 40,025<br>40,000                 | 36,155<br>36,060                         |                               |                   |
| M3720HX     | 37   | 41             |                             | 20,25<br>19,75                   |        | 37,000<br>36,961    |        | 41,025<br>41,000                 | 37,155<br>37,060                         |                               |                   |
| M4020HX     |      |                |                             | 20,25<br>19,75                   |        | ·                   |        |                                  |                                          |                               |                   |
| M4030HX     | 40   | 4.4            |                             | 30,25<br>29,75<br>40,25<br>39,75 |        | 40,000              |        | 44,025                           | 40,155                                   |                               |                   |
| M4040HX     | 40   | 44             |                             |                                  |        | 39,961              |        | 44,000                           | 40,060                                   |                               |                   |
| M4050HX     |      |                |                             | 50,25<br>49,75                   |        |                     |        |                                  |                                          |                               |                   |
| M4520HX     |      |                |                             | 20,25<br>19,75                   |        |                     |        |                                  |                                          |                               |                   |
| M4525HX     |      |                |                             | 25,25<br>24,75                   |        |                     |        |                                  |                                          |                               |                   |
| M4530HX     | 4.5  | 50             |                             | 30,25<br>29,75                   |        | 45,000              |        | 50,025                           | 45,195                                   | 0,234                         |                   |
| M4540HX     | 45   | 50             |                             | 40,25<br>39,75                   |        | 44,961              |        | 50,000                           | 45,080                                   | 0,080                         |                   |
| M4545HX     |      |                |                             | 45,25<br>44,75                   |        |                     |        | 7                                |                                          |                               |                   |
| M4550HX     |      |                |                             | 50,25<br>49,75                   | h8     |                     | H7     |                                  |                                          |                               |                   |
| M5030HX     |      |                |                             | 30,25<br>29,75                   |        |                     |        |                                  |                                          |                               |                   |
| M5040HX     |      |                |                             | 40,25<br>39,75                   |        |                     |        |                                  |                                          |                               |                   |
| M5045HX     | 50   | 55             |                             | 45,25<br>44,75                   |        | 50,000<br>49,961    |        | 55,030<br>55,000                 | 50,200<br>50,080                         | 0,239<br>0,080                |                   |
| M5050HX     |      |                |                             | 50,25<br>49,75                   |        |                     |        |                                  |                                          |                               | 8                 |
| M5060HX     |      |                | 2,460                       | 60,25<br>59,75                   |        |                     |        |                                  |                                          |                               |                   |
| M5520HX     |      |                | 2,415                       | 20,25<br>19,75                   |        |                     |        |                                  |                                          |                               |                   |
| M5525HX     |      |                |                             | 25,25<br>24,75                   |        |                     |        |                                  |                                          |                               |                   |
| M5530HX     |      | 60             |                             | 30,25<br>29,75                   |        | 55,000              |        | 60,030                           | 55,200                                   |                               |                   |
| M5540HX     | 55   | 60             |                             | 40,25<br>39,75                   |        | 54,954              |        | 60,000                           | 55,080                                   |                               |                   |
| M5550HX     |      |                |                             | 50,25<br>49,75                   |        |                     |        |                                  |                                          |                               |                   |
| M5560HX     |      |                |                             | 60,25<br>59,75                   |        |                     |        |                                  |                                          | 0,246<br>0,080                |                   |
| M6030HX     |      |                |                             | 30,25<br>29,75                   |        |                     |        |                                  |                                          | -,,                           |                   |
| M6040HX     |      |                |                             | 40,25<br>39,75                   |        |                     |        |                                  |                                          |                               |                   |
| M6050HX     | 60   | 65             |                             | 50,25                            |        | 60,000<br>59,954    |        | 65,030<br>65,000                 | 60,200<br>60,080                         |                               |                   |
| M6060HX     |      |                |                             | 49,75<br>60,25<br>59,75          | 0,,504 |                     | 00,000 | 00,000                           |                                          |                               |                   |
| M6070HX     |      |                |                             | 70,25<br>69,75                   |        |                     |        |                                  |                                          |                               |                   |

| BESTELL NR. | NENN | IMABE          | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B                                        |                  | WELLEN-Ø<br>Dj[h8] |        | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb. In<br>H7 gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER<br>LOCH-Ø |
|-------------|------|----------------|-----------------------------|----------------------------------------------------|------------------|--------------------|--------|----------------------------------|--------------------------------------------------------|-------------------------------|-------------------|
| DESIELL MK. | Di   | D <sub>o</sub> | max.<br>min.                | max.<br>min.                                       |                  | max.<br>min.       |        | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | dL                |
| PM6530HX    |      |                |                             | 30,25<br>29,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM6540HX    |      |                |                             | 40,25<br>39,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM6550HX    | 65   | 70             |                             | 50,25<br>49,75                                     |                  | 65,000<br>64,954   |        | 70,030<br>70,000                 | 65,262<br>65,100                                       |                               |                   |
| PM6560HX    |      |                |                             | 60,25<br>59,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM6570HX    |      |                |                             | 70,25<br>69,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM7030HX    |      |                |                             | 30,25<br>29,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM7040HX    |      |                |                             | 40,25<br>39,75                                     |                  |                    |        |                                  |                                                        |                               | 8                 |
| PM7045HX    |      |                |                             | 45,25<br>44,75<br>50,25<br>49,75<br>60,25<br>59,75 |                  |                    |        |                                  | 0,308                                                  |                               |                   |
| PM7050HX    | 70   | 75             |                             |                                                    | 70,000<br>69,954 |                    | 75,030 | 70,262                           | 0,100                                                  |                               |                   |
| PM7060HX    |      | /3             |                             |                                                    |                  |                    | 75,000 | 70,100                           |                                                        |                               |                   |
| PM7065HX    |      |                |                             | 65,25<br>64,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| РМ7070НХ    |      |                |                             | 70,25<br>69,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM7080HX    |      |                |                             | 80,25<br>79,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM7540HX    |      |                |                             | 40,25<br>39,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM7560HX    | 75   | 80             |                             | 60,25<br>59,75                                     |                  | 75,000<br>74,954   |        | 80,030<br>80,000                 | 75,262<br>75,100                                       |                               |                   |
| PM7580HX    |      |                |                             | 80,25<br>79,75                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM8040HX    |      |                | 2,450<br>2,384              | 40,50<br>39,50                                     | h8               |                    | H7     |                                  |                                                        |                               |                   |
| PM8050HX    |      |                |                             | 50,50<br>49,50                                     |                  |                    |        |                                  | 80,267<br>80,100                                       | 0,313<br>0,100                |                   |
| PM8060HX    | 80   | 85             |                             | 60,50<br>59,50                                     |                  | 80,000<br>79,954   |        | 85,035<br>85,000                 |                                                        |                               |                   |
| PM8080HX    |      |                |                             | 80,50<br>79,50                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM80100HX   |      |                |                             | 100,50<br>99,50                                    |                  |                    |        |                                  |                                                        |                               |                   |
| PM8530HX    |      |                |                             | 30,50<br>29,50                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM8540HX    |      |                |                             | 40,50<br>39,50                                     |                  |                    |        |                                  |                                                        |                               | 9,5               |
| PM8560HX    | 85   | 90             |                             | 60,50<br>59,50                                     |                  | 85,000<br>84,946   |        | 90,035<br>90,000                 | 85,267<br>85,100                                       |                               | 9,0               |
| PM8580HX    |      |                |                             | 80,50<br>79,50                                     |                  |                    |        |                                  |                                                        |                               |                   |
| PM85100HX   |      |                |                             | 100,50<br>99,50                                    |                  |                    |        |                                  |                                                        |                               |                   |
| PM9040HX    |      |                |                             | 40,50<br>39,50                                     |                  |                    |        |                                  |                                                        | 0,321                         |                   |
| РМ9060НХ    |      |                |                             | 60,50<br>59,50                                     |                  |                    |        |                                  |                                                        | 0,100                         |                   |
| РМ9080НХ    | 90   | 95             |                             | 80,50<br>79,50                                     |                  | 90,000<br>89,946   |        | 95,035<br>95,000                 | 90,267<br>90,100                                       |                               |                   |
| РМ9090НХ    |      |                |                             | 90,50<br>89,50                                     |                  |                    |        |                                  |                                                        |                               |                   |
| РМ90100НХ   |      |                |                             | 100,50<br>99,50                                    |                  |                    |        |                                  |                                                        |                               |                   |
| PM9560HX    | 0.5  | 100            |                             | 60,50<br>59,50                                     |                  | 95,000             |        | 100,035                          | 95,267                                                 |                               |                   |
| PM95100HX   | 95   | 100            |                             | 100,50<br>99,50                                    |                  | 94,946             |        | 100,000                          | 95,100                                                 |                               |                   |


| BESTELL NR. | NENN | MABE | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B      |    | WELLEN-Ø<br>Dj [h8] |    | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb, in<br>H7 gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER-<br>LOCH-Ø |
|-------------|------|------|-----------------------------|------------------|----|---------------------|----|----------------------------------|--------------------------------------------------------|-------------------------------|--------------------|
|             | Di   | Do   | max.<br>min.                | max.<br>min.     |    | max.<br>min.        |    | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | dı                 |
| PM10040HX   |      |      |                             | 40,50<br>59,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM10050HX   |      |      |                             | 50,50<br>49,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM10060HX   | 100  | 105  |                             | 60,50<br>59,50   |    | 100,000             |    | 105,035                          | 100,267                                                |                               |                    |
| PM10080HX   | 100  | 105  |                             | 80,50<br>79,50   |    | 99,946              |    | 105,000                          | 100,100                                                |                               |                    |
| PM10095HX   |      |      |                             | 95,50<br>94,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM100115HX  |      |      |                             | 115,50<br>114,50 |    |                     |    |                                  |                                                        |                               |                    |
| PM10560HX   |      |      |                             | 60,50<br>59,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM10565HX   | 105  | 110  |                             | 65,50<br>64,50   |    | 105,000             |    | 110,035                          | 105,267                                                |                               |                    |
| PM105110HX  | 103  | 110  | 2,450<br>2,384              | 110,50<br>109,50 |    | 104,946             |    | 110,000                          | 105,100                                                | 0,321<br>0,100                |                    |
| PM105115HX  |      |      |                             | 115,50<br>114,50 |    |                     |    |                                  |                                                        |                               |                    |
| PM11050HX   |      |      |                             | 50,50<br>49,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM11060HX   |      |      |                             | 60,50<br>59,50   |    |                     |    |                                  |                                                        |                               | 9,5                |
| PM110100HX  | 110  | 115  |                             | 100,50<br>99,50  |    | 110,000<br>109,946  |    | 115,035<br>115,000               | 110,267<br>105,100                                     |                               |                    |
| PM110110HX  |      |      |                             | 110,50<br>109,50 |    |                     |    |                                  |                                                        |                               |                    |
| PM110115HX  |      |      |                             | 115,50<br>114,50 |    |                     |    |                                  |                                                        |                               |                    |
| PM11550HX   | 115  | 120  |                             | 50,50<br>49,50   |    | 115,000             |    | 120,035                          | 115,267                                                |                               |                    |
| PM11570HX   | 115  | 120  |                             | 70,50<br>69,95   | h8 | 114,946             | H7 | 120,000                          | 115,100                                                |                               |                    |
| PM12060HX   |      |      |                             | 60,50<br>59,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM120100HX  | 120  | 125  |                             | 100,50<br>99,50  |    | 120,000<br>119,946  |    | 125,040<br>125,000               | 120,280<br>120,130                                     | 0,334<br>0,130                |                    |
| PM120110HX  |      |      |                             | 110,50<br>109,50 |    |                     |    |                                  |                                                        |                               |                    |
| PM12560HX   |      |      |                             | 60,50<br>59,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM125100HX  | 125  | 130  |                             | 100,50<br>99,50  |    | 125,000<br>124,937  |    | 130,040<br>130,000               | 125,280<br>125,130                                     |                               |                    |
| PM125110HX  |      |      |                             | 110,50<br>109,50 |    |                     |    |                                  |                                                        |                               |                    |
| PM13050HX   |      |      |                             | 50,50<br>49,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM13060HX   | 120  | 105  | 2,435                       | 60,50<br>59,50   |    | 130,000             |    | 135,040                          | 130,280                                                |                               |                    |
| PM13080HX   | 130  | 135  | 2,380                       | 80,50<br>79,50   |    | 129,937             |    | 135,000                          | 130,130                                                |                               |                    |
| PM130100HX  |      |      |                             | 100,50<br>99,50  |    |                     |    |                                  |                                                        | 0,343<br>0,130                |                    |
| PM13560HX   | 105  | 140  |                             | 60,50<br>59,50   |    | 135,000             |    | 140,040                          | 135,280                                                |                               | kein               |
| PM13580HX   | 135  | 140  |                             | 80,50<br>79,50   |    | 134,937             |    | 140,000                          | 135,130                                                |                               | Schmier-<br>loch   |
| PM14050HX   |      |      |                             | 50,50<br>49,50   |    |                     |    |                                  |                                                        |                               |                    |
| PM14060HX   | 140  | 4.4  |                             | 60,50<br>59,50   |    | 140,000             |    | 145,040                          | 140,280                                                |                               |                    |
| PM14080HX   | 140  | 145  |                             | 80,50<br>79,50   |    | 139,937             |    | 145,000                          | 140,130                                                |                               |                    |
| PM140100HX  |      |      |                             | 100,50<br>99,50  |    |                     |    |                                  |                                                        |                               |                    |


| BESTELL NR. | NENN | MAßE | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B                      |     | WELLEN-Ø<br>Dj [h8] |    | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb, in<br>H7 gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER-<br>LOCH-Ø |
|-------------|------|------|-----------------------------|----------------------------------|-----|---------------------|----|----------------------------------|--------------------------------------------------------|-------------------------------|--------------------|
| DESTELL NR. | Di   | Do   | max.<br>min.                | max.<br>min.                     |     | max.<br>min.        |    | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | dı                 |
| PM15050HX   |      |      |                             | 50,50<br>49,50                   |     |                     |    |                                  |                                                        |                               |                    |
| PM15060HX   |      |      |                             | 60,50<br>59,50                   |     | 150,000             |    | 155,040                          | 150,280                                                |                               |                    |
| PM15080HX   | 150  | 155  |                             | 80,50<br>79,50                   |     | 149,937             |    | 155,000                          | 150,130                                                |                               |                    |
| PM150100HX  |      |      |                             | 100,50<br>99,50                  |     |                     |    |                                  |                                                        |                               |                    |
| PM16050HX   |      |      |                             | 50,50<br>49,50                   |     |                     |    |                                  |                                                        |                               |                    |
| PM16060HX   | 160  | 165  |                             | 60,50<br>59,50                   |     | 160,000             |    | 165,040                          | 160,280                                                | 0,343                         |                    |
| PM16080HX   | 160  | 165  |                             | 80,50<br>79,50                   |     | 159,937             |    | 165,000                          | 160,130                                                | 0,130                         |                    |
| PM160100HX  |      |      |                             | 100,50<br>99,50                  |     |                     |    |                                  |                                                        |                               |                    |
| PM17050HX   |      |      |                             | 50,50<br>49,50                   |     |                     |    |                                  |                                                        |                               |                    |
| PM17060HX   | 170  | 175  |                             | 60,50<br>59,50                   |     | 170,000             |    | 175,040                          | 170,280                                                |                               |                    |
| PM17080HX   | 170  | 1/5  |                             | 80,50<br>79,50                   |     | 169,937             |    | 175,000                          | 170,130                                                |                               |                    |
| PM170100HX  |      |      |                             | 100,50<br>99,50                  |     |                     |    |                                  |                                                        | 0,349                         |                    |
| PM18050HX   |      |      |                             | 50,50<br>49,50                   |     |                     |    |                                  |                                                        |                               |                    |
| PM18060HX   | 180  | 185  |                             | 60,50<br>59,50                   |     | 180,000<br>179,937  |    | 185,046                          | 180,286                                                |                               |                    |
| PM18080HX   | 100  | 100  |                             | 80,50<br>79,50                   |     |                     |    | 185,000                          | 180,130                                                | 0,130                         |                    |
| PM180100HX  |      |      |                             | 100,50<br>99,50                  |     |                     |    |                                  |                                                        |                               |                    |
| PM19050HX   |      |      |                             | 50,50<br>49,50                   |     |                     | H7 |                                  |                                                        |                               |                    |
| PM19060HX   |      |      | 2,435                       | 60,50<br>59,50                   | h8  |                     |    |                                  | 190,286<br>190,130                                     |                               | kein<br>Schmier-   |
| PM19080HX   | 190  | 195  | 2,380                       | 80,50<br>79,50                   | 110 | 190,000<br>189,928  |    | 195,046<br>195,000               |                                                        |                               | loch               |
| PM190100HX  |      |      |                             | 100,50<br>99,50                  |     |                     |    |                                  |                                                        |                               |                    |
| PM190120HX  |      |      |                             | 120,50<br>119,50                 |     |                     |    |                                  |                                                        |                               |                    |
| PM20050HX   |      |      |                             | 50,50<br>49,50                   |     |                     |    |                                  |                                                        |                               |                    |
| PM20060HX   |      |      |                             | 60,50<br>59,50                   |     |                     |    |                                  |                                                        |                               |                    |
| PM20080HX   | 200  | 205  |                             | 80,50<br>79,50                   |     | 200,000<br>199,928  |    | 205,046<br>205,000               | 200,286<br>200,130                                     |                               |                    |
| PM200100HX  |      |      |                             | 100,50<br>99,50                  |     |                     |    |                                  |                                                        |                               |                    |
| PM200120HX  |      |      |                             | 120,50<br>119,50                 |     |                     |    |                                  |                                                        | 0,358                         |                    |
| PM22050HX   |      |      |                             | 50,50<br>49,50                   |     |                     |    |                                  |                                                        | 0,130                         |                    |
| PM22060HX   |      |      |                             | 60,50<br>59,50                   |     |                     |    |                                  |                                                        |                               |                    |
| PM22080HX   | 220  | 225  |                             | 80,50<br>79,50                   |     | 220,000<br>219,928  |    | 225,046<br>225,000               | 220,286<br>220,130                                     |                               |                    |
| PM220100HX  |      |      |                             | 100,50<br>99,50                  |     |                     |    |                                  |                                                        |                               |                    |
| PM220120HX  |      |      |                             | 120,50<br>119,50                 |     |                     |    |                                  |                                                        |                               |                    |
| PM24050HX   |      |      |                             | 50,50<br>49,50<br>60,50<br>59,50 |     |                     |    |                                  |                                                        |                               |                    |
| PM24060HX   |      |      |                             |                                  |     |                     |    |                                  |                                                        |                               |                    |
| PM24080HX   | 240  | 245  |                             | 80,50<br>79,50                   |     | 240,000<br>239,928  |    |                                  |                                                        |                               |                    |
| PM240100HX  |      |      |                             | 100,50<br>99,50                  |     |                     |    |                                  |                                                        |                               |                    |
| PM240120HX  |      |      |                             | 120,50<br>119,50                 |     |                     |    |                                  |                                                        |                               |                    |

| BESTELL NR. | NENN | IMAßE          | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B      |    | WELLEN-Ø<br>Dj [h8] |           | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb, in<br>H7 Gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER-<br>LOCH-Ø |
|-------------|------|----------------|-----------------------------|------------------|----|---------------------|-----------|----------------------------------|--------------------------------------------------------|-------------------------------|--------------------|
|             | Di   | D <sub>o</sub> | max.<br>min.                | max.<br>min.     |    | max.<br>min.        |           | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | dı                 |
| PM25050HX   |      |                |                             | 50,50<br>49,50   |    |                     |           |                                  |                                                        |                               |                    |
| PM25060HX   |      |                |                             | 60,50<br>59,50   |    |                     |           |                                  |                                                        |                               |                    |
| PM25080HX   | 250  | 255            |                             | 80,50<br>79,50   |    | 250,000<br>249,928  |           | 255,052<br>255,000               | 250,292<br>250,130                                     | 0,364<br>0,130                |                    |
| PM250100HX  |      |                |                             | 100,50<br>99,50  |    | ,                   |           |                                  |                                                        | ,                             |                    |
| PM250120HX  |      |                |                             | 120,50<br>119,50 |    |                     |           |                                  |                                                        |                               |                    |
| PM26050HX   |      |                |                             | 50,50<br>49,50   |    |                     |           |                                  |                                                        |                               |                    |
| PM26060HX   |      |                |                             | 60,50<br>59,50   |    |                     |           |                                  |                                                        |                               |                    |
| PM26080HX   | 260  | 265            |                             | 80,50<br>79,50   |    | 260,000<br>259,919  |           | 265,052<br>265,000               | 260,292<br>260,130                                     |                               |                    |
| PM260100HX  |      |                |                             | 100,50<br>99,50  |    | 200,010             |           |                                  | 200,100                                                |                               |                    |
| PM260120HX  |      |                | 2,435                       | 120,50<br>119,50 |    |                     |           |                                  |                                                        |                               | kein               |
| PM28050HX   |      |                | 2,380                       | 50,50<br>49,50   | h8 |                     | H7        |                                  |                                                        |                               | Schmier-<br>loch   |
| PM28060HX   |      |                |                             | 60,50<br>59,50   |    |                     |           |                                  |                                                        |                               |                    |
| PM28080HX   | 280  | 285            |                             | 80,50<br>79,50   |    | 280,000<br>279,919  |           | 285,052<br>285,000               | 280,292<br>280,130                                     | 0,373<br>0,130                |                    |
| PM280100HX  |      |                |                             | 100,50<br>99,50  |    | 2,3,513             |           | 200,000                          | 200,100                                                | 0,100                         |                    |
| PM280120HX  |      |                |                             | 120,50<br>119,50 |    |                     |           |                                  |                                                        |                               |                    |
| PM30050HX   |      |                |                             | 50,50<br>49,50   |    |                     |           |                                  |                                                        |                               |                    |
| PM30060HX   |      |                |                             | 60,50<br>59,50   |    |                     |           |                                  |                                                        |                               |                    |
| PM30080HX   | 300  | 305            |                             | 80,50<br>79,50   |    | 300,000<br>299 919  |           | 305,052<br>305,000               | 300,292<br>300,130                                     |                               |                    |
| PM300100HX  |      |                |                             | 100,50<br>99,50  |    | 299,919             | 9 305,000 | 000,000                          | 000,100                                                |                               |                    |
| PM300120HX  |      |                |                             | 120,50<br>119,50 |    |                     |           |                                  |                                                        |                               |                    |

#### 9.2 MB HI-EX® ZYLINDRISCHE BUCHSEN







Dimensionen und Toleranzen nach ISO 3547 und GSP-Spezifikatioen Hinweis: Für  $D_i \le 40$  mm, Buchsenrücken mit Zinnüberzug; für  $D_i > 40$  mm, Buchsenrücken mit Kupferüberzug

#### Außenfasen Co und Innenfasen Ci

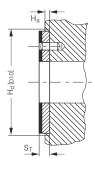
| WANDDICKE<br>S <sub>3</sub> | C <sub>o</sub> BEARBEITET | • •       | C <sub>i</sub> (b) |
|-----------------------------|---------------------------|-----------|--------------------|
| 1                           | 0,6 ± 0,4                 | 0,6 ± 0,4 | -0,1 bis -0,5      |
| 1.5                         | 06+04                     | 06+04     | -0.1 his -0.7      |

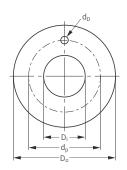
| WANDDICKE             | C <sub>o</sub> | (a)              | C <sub>i</sub> (b) |
|-----------------------|----------------|------------------|--------------------|
| <b>S</b> <sub>3</sub> | BEARBEITET     | / <b>GEROLLT</b> | Ol (n)             |
| 2                     | $1,2 \pm 0,4$  | $1,0 \pm 0,4$    | -0,1 to -0,7       |
| 2,5                   | 1,8 ± 0,6      | 1,2 ± 0,4        | -0,2 to -1,0       |

- (a) = Fase Co nach Ermessen des Herstellers bearbeitet oder gerollt
- (b) =  $C_i$  kann Radius oder Fase sein, in Übereinstimmung mit ISO 13715

| BESTELL NR. | NENN | IMAßE | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B    |    | WELLEN-Ø<br>Dj [d8] |    | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb. In<br>H7 Gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER-<br>LOCH-Ø |
|-------------|------|-------|-----------------------------|----------------|----|---------------------|----|----------------------------------|--------------------------------------------------------|-------------------------------|--------------------|
|             | Di   | Do    | max.<br>min.                | max.<br>min.   |    | max.<br>min.        |    | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | d <sub>L</sub>     |
| MB0808HX    |      |       |                             | 8,25<br>7,75   |    |                     |    |                                  |                                                        |                               | Irain              |
| MB0810HX    | 8    | 10    |                             | 10,25<br>9,75  |    | 7,960<br>7,938      |    | 10,015<br>10,000                 | 8,015<br>8,000                                         | 0,077<br>0,040                | kein<br>Schmier-   |
| MB0812HX    |      |       |                             | 12,25<br>11,75 |    |                     |    |                                  |                                                        |                               | loch               |
| MB1010HX    |      |       |                             | 10,25<br>9,75  |    |                     |    |                                  |                                                        |                               | 3                  |
| MB1012HX    |      |       |                             | 12,25<br>11,75 |    | 9,960               |    | 12,018                           | 10.018                                                 | 0.080                         |                    |
| MB1015HX    | 10   | 12    |                             | 15,25<br>14,75 |    | 9,938               |    | 12,000                           | 10,000                                                 | 0,040                         | 4                  |
| MB1020HX    |      |       |                             | 20,25<br>19,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB1210HX    |      |       |                             | 10,25<br>9,75  |    |                     |    |                                  |                                                        |                               | 3                  |
| MB1212HX    |      |       |                             | 12,25<br>11,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB1215HX    | 12   | 14    | 1,108<br>1,082              | 15,25<br>14,75 | d8 | 11,950<br>11,923    | H7 | 14,018<br>14,000                 | 12,018<br>12,000                                       |                               |                    |
| MB1220HX    |      |       | 1,002                       | 20,25<br>19,75 |    | 11,923              |    | 14,000                           | 12,000                                                 |                               |                    |
| MB1225HX    |      |       |                             | 25,25<br>24,75 |    |                     |    |                                  |                                                        |                               | 4                  |
| MB1415HX    |      |       |                             | 15,25<br>14,75 |    |                     |    |                                  |                                                        | 0,095                         |                    |
| MB1420HX    | 14   | 16    |                             | 20,25<br>19,75 |    | 13,950<br>13,923    |    | 16,018<br>16,000                 | 14,018<br>14,000                                       | 0,050                         |                    |
| MB1425HX    |      |       |                             | 25,25<br>24,75 |    | 10,320              |    | 10,000                           | 14,000                                                 |                               |                    |
| MB1510HX    |      |       |                             | 10,25<br>9,75  |    |                     |    |                                  |                                                        |                               | 3                  |
| MB1512HX    |      |       |                             | 12,25<br>11,75 |    | 14.050              |    | 17.019                           | 15,018                                                 |                               |                    |
| MB1515HX    | 15   | 15 17 | 17                          | 15,25<br>14,75 |    | 14,950<br>14,923    |    | 17,018<br>17,000                 | 15,000                                                 |                               | 4                  |
| MB1525HX    |      |       |                             | 25,25<br>24,75 |    |                     |    |                                  |                                                        |                               |                    |

| BESTELL NR.   | NENN | MABE | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B                                                         |                  | WELLEN-Ø<br>Dj [d8] |                  | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb. In<br>H7 gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER<br>LOCH-Ø |
|---------------|------|------|-----------------------------|---------------------------------------------------------------------|------------------|---------------------|------------------|----------------------------------|--------------------------------------------------------|-------------------------------|-------------------|
| DEGILLE IIII. | Di   | Do   | max.<br>min.                | max.<br>min.                                                        |                  | max.<br>min.        |                  | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | dı                |
| MB1615HX      |      |      |                             | 15,25<br>14,75                                                      |                  |                     |                  |                                  |                                                        |                               |                   |
| MB1620HX      | 16   | 18   |                             | 20,25<br>19,75                                                      |                  | 15,950<br>15,923    |                  | 18,018<br>18,000                 | 16,018<br>16,000                                       |                               |                   |
| MB1625HX      |      |      | 1,108                       | 25,25<br>24,75                                                      |                  |                     |                  |                                  |                                                        | 0,095                         |                   |
| MB1815HX      |      |      | 1,082                       | 15,25<br>14,75                                                      |                  |                     |                  |                                  |                                                        | 0,050                         |                   |
| MB1820HX      | 18   | 20   |                             | 20,25<br>19,75                                                      |                  | 17,950<br>17,923    |                  | 20,021<br>20,000                 | 18,018<br>18,000                                       |                               |                   |
| MB1825HX      |      |      |                             | 25,25<br>24,75                                                      |                  |                     |                  |                                  |                                                        |                               | 4                 |
| MB2010HX      |      |      |                             | 10,25<br>9,75<br>15,25<br>14,75<br>20,25<br>19,75<br>25,25<br>24,75 |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2015HX      |      |      |                             |                                                                     |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2020HX      | 20   | 23   |                             |                                                                     |                  | 19,935<br>19,902    |                  | 23,021<br>23,000                 | 20,021<br>20,000                                       |                               |                   |
| MB2025HX      |      |      |                             |                                                                     |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2030HX      |      |      |                             | 30,25<br>29,75                                                      |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2215HX      |      |      |                             | 15,25<br>14,75                                                      |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2220HX      | 22   | 25   |                             | 20,25<br>19,75                                                      |                  | 21,935<br>21,902    |                  | 25,021                           | 22,021                                                 |                               |                   |
| MB2225HX      | 22   | 23   |                             | 25,25<br>24,75                                                      |                  |                     | Н7               | 25,000                           | 22,000                                                 |                               |                   |
| MB2230HX      |      |      | 1,608<br>1,576              | 30,25<br>29,75                                                      | d8               |                     |                  |                                  |                                                        |                               |                   |
| MB2415HX      |      |      |                             | 15,25<br>14,75                                                      |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2420HX      | 24   | 27   |                             | 20,25<br>19,75                                                      |                  | 23,935              |                  | 27,021                           | 24,021                                                 |                               |                   |
| MB2425HX      | 24   | 21   |                             | 25,25<br>24,75                                                      |                  | 23,902              |                  | 27,000                           | 24,000                                                 | 0,119<br>0,065                |                   |
| MB2430HX      |      |      |                             | 30,25<br>29,75                                                      |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2515HX      |      |      |                             | 15,25<br>14,75                                                      |                  |                     |                  |                                  |                                                        |                               | 6                 |
| MB2520HX      | 25   | 28   |                             | 20,25<br>19,75                                                      |                  | 24,935              |                  | 28,021                           | 25,021                                                 |                               | 0                 |
| MB2525HX      | 23   | 20   |                             | 25,25<br>24,75                                                      |                  | 24,902              |                  | 28,000                           | 25,000                                                 |                               |                   |
| MB2530HX      |      |      |                             | 30,25<br>29,75                                                      |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2820HX      |      |      |                             | 20,25<br>19,75                                                      |                  |                     |                  |                                  |                                                        |                               |                   |
| MB2825HX      | 28   | 32   |                             | 25,25<br>24,75                                                      | 27,935<br>27,902 |                     | 32,025<br>32,000 | 28,021<br>28,000                 |                                                        |                               |                   |
| MB2830HX      |      |      | 2,108                       | 30,25<br>29,75                                                      |                  |                     |                  |                                  |                                                        |                               |                   |
| MB3020HX      |      |      | 2,072                       | 29,75<br>20,25<br>19,75<br>30,25<br>29,75<br>40,25<br>39,75         |                  |                     |                  |                                  |                                                        |                               |                   |
| MB3030HX      | 30   | 34   |                             |                                                                     |                  | 30,000<br>29,967    |                  |                                  |                                                        |                               |                   |
| MB3040HX      |      |      |                             |                                                                     |                  |                     |                  |                                  |                                                        |                               |                   |


| BESTELL NR. | NENN | IMAßE | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B    |    | WELLEN-Ø<br>Dj [d8] |    | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb, in<br>H7 gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER-<br>LOCH-Ø |
|-------------|------|-------|-----------------------------|----------------|----|---------------------|----|----------------------------------|--------------------------------------------------------|-------------------------------|--------------------|
| DIGITLE MA. | Di   | Do    | max.<br>min.                | max.<br>min.   |    | max.<br>min.        |    | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | dı                 |
| MB3220HX    |      |       |                             | 20,25<br>19,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB3230HX    | 32   | 36    |                             | 30,25<br>29,75 |    | 31,920              |    | 36,025                           | 32,025                                                 |                               |                    |
| MB3235HX    | 32   | 30    |                             | 35,25<br>34,75 |    | 31,881              |    | 36,000                           | 32,000                                                 |                               |                    |
| MB3240HX    |      |       |                             | 40,25<br>39,75 |    |                     |    |                                  |                                                        |                               | 6                  |
| MB3520HX    |      |       |                             | 20,25<br>19,75 |    |                     |    |                                  |                                                        |                               | 0                  |
| MB3530HX    | 35   | 39    | 2,108                       | 30,25<br>29,75 |    | 34,920<br>34,881    |    | 39,025<br>39,000                 | 35,025<br>35,000                                       |                               |                    |
| MB3550HX    |      |       | 2,072                       | 50,25<br>49,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB3720HX    | 37   | 41    |                             | 20,25<br>19,75 |    | 36,920<br>36,881    |    | 41,025<br>41,000                 | 37,025<br>37,000                                       |                               |                    |
| MB4020HX    |      |       |                             | 20,25<br>19,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB4030HX    | 40   | 44    |                             | 30,25<br>29,75 |    | 39,920              |    | 44,025                           | 40,025                                                 | 0,144<br>0,080                |                    |
| MB4040HX    | 40   | 44    |                             | 40,25<br>39,75 |    | 39,881              |    | 44,000                           | 40,000                                                 |                               |                    |
| MB4050HX    |      |       |                             | 50,25<br>49,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB4520HX    |      |       |                             | 20,25<br>19,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB4530HX    |      |       |                             | 30,25<br>29,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB4540HX    | 45   | 50    |                             | 40,25<br>39,75 | d8 | 44,920<br>44,881    | H7 | 50,025<br>50,000                 | 45,025<br>45,000                                       |                               |                    |
| MB4545HX    |      |       |                             | 45,25<br>44,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB4550HX    |      |       |                             | 50,25<br>49,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB5040HX    | 50   | 55    |                             | 40,25<br>39,75 |    | 49,920              |    | 55,030                           | 50,025                                                 |                               |                    |
| MB5060HX    | 30   | 33    |                             | 60,25<br>59,75 |    | 49,881              |    | 55,000                           | 50,000                                                 |                               | 8                  |
| MB5520HX    |      |       |                             | 20,25<br>19,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB5525HX    |      |       | 2,634<br>2,588              | 25,25<br>24,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB5530HX    | 55   | 60    |                             | 30,25<br>29,75 |    | 54,900              |    | 60,030                           | 55,030                                                 |                               |                    |
| MB5540HX    | 55   | 60    |                             | 40,25<br>39,75 |    | 54,854              |    | 60,000                           | 55,000                                                 |                               |                    |
| MB5550HX    |      |       |                             | 50,25<br>49,75 |    |                     |    |                                  |                                                        | 0,144                         |                    |
| MB5560HX    |      |       |                             | 60,25<br>59,75 |    |                     |    |                                  |                                                        | 0,080                         |                    |
| MB6030HX    |      |       |                             | 30,25<br>29,75 |    |                     |    |                                  |                                                        |                               |                    |
| MB6040HX    | (0)  | 65    |                             | 40,25<br>39,75 |    | 59,900              |    | 65,030                           | 60,030                                                 |                               |                    |
| MB6060HX    | 60   | 65    |                             | 60,25<br>59,75 |    | 59,854              |    | 65,000                           | 60,000                                                 |                               |                    |
| MB6070HX    |      |       |                             | 70,25<br>69,75 |    |                     |    |                                  |                                                        |                               |                    |


| BESTELL NR. | NENN | IMAßE | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B           |    | WELLEN-Ø<br>Dj [d8] |                    | GEHÄUSE-Ø<br>D <sub>H</sub> [H7]        | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb. In<br>H7 Gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER<br>LOCH-Ø |
|-------------|------|-------|-----------------------------|-----------------------|----|---------------------|--------------------|-----------------------------------------|--------------------------------------------------------|-------------------------------|-------------------|
| DEGILLE MI. | Di   | Do    | max.<br>min.                | max.<br>min.          |    | max.<br>min.        |                    | max.<br>min.                            | max.<br>min.                                           | max.<br>min.                  | dL                |
| MB6540HX    |      |       |                             | 40,25<br>39,75        |    |                     |                    |                                         |                                                        |                               |                   |
| MB6550HX    |      | 70    |                             | 50,25<br>49,75        |    | 64,900              |                    | 70,030                                  | 65,030                                                 |                               |                   |
| MB6560HX    | 65   | 70    |                             | 60,25<br>59,75        |    | 64,854              |                    | 70,000                                  | 65,000                                                 |                               |                   |
| MB6570HX    |      |       |                             | 70,25<br>69,75        |    |                     |                    |                                         |                                                        |                               |                   |
| MB7040HX    |      |       |                             | 40,25<br>39,75        |    |                     |                    |                                         |                                                        |                               | 8                 |
| MB7050HX    |      |       |                             | 50,25<br>49,75        |    |                     |                    |                                         |                                                        |                               |                   |
| MB7065HX    | 70   | 75    |                             | 65,25<br>64,75        |    | 69,900<br>69,854    |                    | 75,030<br>75,000                        | 70,030<br>70,000                                       |                               |                   |
| MB7070HX    |      |       |                             | 70,25<br>69,75        |    |                     |                    |                                         |                                                        | 0,176<br>0,100                |                   |
| MB7080HX    |      |       |                             | 80,25<br>79,75        |    |                     |                    |                                         |                                                        |                               |                   |
| MB7540HX    |      |       |                             | <b>40,25</b><br>39,75 |    |                     |                    |                                         |                                                        |                               |                   |
| MB7560HX    | 75   | 80    |                             | 60,25<br>59,75        |    | 74,900<br>74,854    |                    | 80,030<br>80,000                        | 75,030<br>75,000                                       |                               |                   |
| MB7580HX    |      |       |                             | 80,25<br>79,75        |    |                     |                    |                                         |                                                        |                               |                   |
| MB8040HX    |      |       |                             | 40,50<br>39,50        |    |                     |                    |                                         |                                                        |                               |                   |
| MB8060HX    |      | 0.5   |                             | 60,50<br>59,50        |    | 79,900              |                    | 85,035                                  | 80,030                                                 |                               |                   |
| MB8080HX    | 80   | 85    |                             | 80,50<br>79,50        |    | 79,854              |                    | 85,000                                  | 80,000                                                 |                               |                   |
| MB80100HX   |      |       | 2,634                       | 100,50<br>99,50       | 40 |                     |                    |                                         |                                                        |                               |                   |
| MB8530HX    |      |       | 2,568                       | 30,50<br>29,50        | d8 |                     | H/                 | H7                                      |                                                        |                               |                   |
| MB8540HX    |      |       |                             | 40,50<br>39,50        |    |                     |                    |                                         |                                                        |                               |                   |
| MB8560HX    | 85   | 90    |                             | 60,50<br>59,50        |    | 84,880<br>84,826    |                    | 90,035<br>90,000                        | 85,035<br>85,000                                       |                               |                   |
| MB8580HX    |      |       |                             | 80,50<br>79,50        |    |                     |                    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                        |                               |                   |
| MB85100HX   |      |       |                             | 100,50<br>99,50       |    |                     |                    |                                         |                                                        |                               | 9,5               |
| MB9040HX    |      |       |                             | 40,50<br>39,50        |    |                     |                    |                                         |                                                        |                               |                   |
| MB9060HX    |      | 0.5   |                             | 60,50<br>59,50        |    | 89,880              |                    | 95,035                                  | 90,035                                                 |                               |                   |
| MB9090HX    | 90   | 95    |                             | 90,50<br>89,50        |    | 89,826              |                    | 95,000                                  | 90,000                                                 | 0,209                         |                   |
| MB90100HX   |      |       |                             | 100,50<br>99,50       |    |                     |                    |                                         |                                                        | 0,120                         |                   |
| MB9560HX    | 0.5  | 40-   |                             | 60,50<br>59,50        |    | 94,880              |                    | 100,035                                 | 95,035                                                 |                               |                   |
| MB95100HX   | 95   | 100   |                             | 100,50<br>99,50       |    | 94,826              |                    | 100,000                                 | 95,000                                                 |                               |                   |
| MB10050HX   |      |       |                             | 50,50<br>49,50        |    |                     |                    |                                         |                                                        |                               |                   |
| MB10060HX   |      |       |                             | 60,50<br>59,50        |    |                     |                    |                                         |                                                        |                               |                   |
| MB10080HX   | 100  | 105   |                             | 80,50<br>79,50        |    | 99,880<br>99,826    | 105,035<br>105,000 | 100,035<br>100,000                      |                                                        |                               |                   |
| MB10095HX   |      |       |                             | 95,50<br>94,50        |    | 77,020              |                    | 100,000                                 |                                                        |                               |                   |
| MB100115HX  |      |       |                             | 115,50<br>114,50      |    |                     |                    |                                         |                                                        |                               |                   |

| BESTELL NR. | NENN | MABE | WANDDICKE<br>S <sub>3</sub> | BREITE<br>B              |    | WELLEN-Ø<br>Dj [d8] |    | GEHÄUSE-Ø<br>D <sub>H</sub> [H7] | BUCHSEN-Ø D <sub>i,a</sub><br>Eingeb. In<br>H7 gehäuse | LAGERSPIEL<br>C <sub>Dm</sub> | SCHMIER-<br>LOCH-Ø |
|-------------|------|------|-----------------------------|--------------------------|----|---------------------|----|----------------------------------|--------------------------------------------------------|-------------------------------|--------------------|
|             | Di   | Do   | max.<br>min.                | max.<br>min.             |    | max.<br>min.        |    | max.<br>min.                     | max.<br>min.                                           | max.<br>min.                  | dı                 |
| MB10560HX   |      |      |                             | 60,50<br>59,50           |    |                     |    |                                  |                                                        |                               |                    |
| MB105110HX  | 105  | 110  |                             | 110,50<br>109,50         |    | 104,880<br>104.826  |    | 110,035<br>110,000               | 105,035<br>105.000                                     |                               |                    |
| MB105115HX  |      |      |                             | 115,50<br>114,50         |    | 101,020             |    | 110,000                          | 100,000                                                |                               |                    |
| MB11060HX   |      |      | 2,634<br>2,568              | 60,50<br>59,50           |    | 109.880             |    | 115.035                          | 110.035                                                |                               |                    |
| MB110115HX  | 110  | 115  | 2,500                       | 115,50<br>114,50         |    | 109,880             |    | 115,035                          | 110,035                                                | 0,209<br>0,120                |                    |
| MB11550HX   |      |      |                             | 50,50<br>49,50           |    | 114,000             |    | 120.035                          | 115.005                                                | 0,120                         | 9.5                |
| MB11570HX   | 115  | 120  |                             | 70,50<br>69,50           |    | 114,880<br>114,826  |    | 120,035                          | 115,035<br>115,000                                     |                               |                    |
| MB12060HX   |      |      |                             | 60,50<br>59,50           |    | 110,000             |    | 105.040                          | 100.005                                                |                               |                    |
| MB120100HX  | 120  | 125  |                             | 100,50<br>99,50          |    | 119,880<br>119,826  |    | 125,040<br>125,000               | 120,035<br>120,000                                     |                               |                    |
| MB125100HX  | 125  | 130  |                             | 100,50<br>99,50          |    | 124,855<br>124,792  |    | 130,040<br>130.000               | 125,040<br>125,000                                     |                               | _                  |
| MB13050HX   |      |      |                             | 50,50<br>49,50           | d8 | 124,792             | H7 | 130,000                          | 123,000                                                |                               |                    |
| MB13060HX   | 130  | 135  |                             | 60,50                    |    | 129,855             |    | 135,040                          | 130,040                                                |                               |                    |
| MB130100HX  |      |      |                             | 59,50<br>100,50<br>99,50 |    | 129,792             |    | 135,000                          | 130,000                                                |                               |                    |
| MB13560HX   |      |      | 2,619<br>2,564              | 60,50<br>59,50           |    | 104055              |    | 1.40.040                         | 105.040                                                |                               |                    |
| MB13580HX   | 135  | 140  | 2,504                       | 80,50<br>79,50           |    | 134,855<br>134,792  |    | 140,040<br>140,000               | 135,040<br>135,000                                     | 0,248                         | kein               |
| MB14060HX   |      |      |                             | 60,50<br>59,50           |    | 100.055             |    | 145040                           | 140040                                                 | 0,145                         | Schmier-<br>loch   |
| MB140100HX  | 140  | 145  |                             | 100,50                   |    | 139,855<br>139,792  |    | 145,040<br>145,000               | 140,040<br>140,000                                     |                               |                    |
| MB15060HX   |      |      |                             | 99,50<br>60,50           |    |                     |    |                                  |                                                        |                               |                    |
| MB15080HX   | 150  | 155  |                             | 59,50<br>80,50           |    | 149,855             |    | 155,040                          | 150,040                                                |                               |                    |
| MB150100HX  |      |      |                             | 79,50<br>100,50<br>99.50 |    | 149,792             |    | 155,000                          | 150,000                                                |                               |                    |

## 9.3 HI-EX® ANLAUFSCHEIBEN







| BESTELL NR. | INNEN-Ø                        | AUBEN-Ø                        | DICKE                          | STIFTLOCH                        |                                      | EINDREHTIEFE                   |
|-------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|--------------------------------------|--------------------------------|
|             | D <sub>i</sub><br>max.<br>min. | D <sub>o</sub><br>max.<br>min. | S <sub>T</sub><br>max.<br>min. | Ø d <sub>D</sub><br>max.<br>min. | PCD Ø d <sub>P</sub><br>max.<br>min. | H <sub>a</sub><br>max.<br>min. |
| WC08HX      | 10,25<br>10,00                 | 20,00<br>19,75                 | 1,58<br>1,49                   | -                                | -                                    | 1,20<br>0,95                   |
| WC10HX      | 12,25<br>12,00                 | 24,00<br>23,75                 |                                | 1,875<br>1,625                   | 18,12<br>17,88                       |                                |
| WC12HX      | 14,25<br>14,00                 | 26,00<br>25,75                 |                                | 2,375<br>2,125                   | 20,12<br>19,88                       |                                |
| WC14HX      | 16,25<br>16,00                 | 30,00<br>29,75                 |                                |                                  | 22,12<br>21,88                       |                                |
| WC16HX      | 18,25<br>18,00                 | 32,00<br>31,75                 |                                |                                  | 25,12<br>24,88                       |                                |
| WC18HX      | 20,25<br>20,00                 | 36,00<br>35,75                 |                                | 3,375<br>3,125                   | 28,12<br>27,88                       |                                |
| WC20HX      | 22,25<br>22,00                 | 38,00<br>37,75                 |                                |                                  | 30,12<br>29,88                       |                                |
| WC22HX      | 24,25<br>24,00                 | 42,00<br>41,75                 |                                |                                  | 33,12<br>32,88                       |                                |
| WC24HX      | 26,25<br>26,00                 | 44,00<br>43,75                 |                                |                                  | 35,12<br>34,88                       |                                |
| WC25HX      | 28,25<br>28,00                 | 48,00<br>47,75                 |                                | 4,375<br>4,125                   | 38,12<br>37,88                       |                                |
| MC30HX      | 32,25<br>32,00                 | 54,00<br>53,75                 |                                |                                  | 43,12<br>42,88                       |                                |
| WC35HX      | 38,25<br>38,00                 | 62,00<br>61,75                 |                                |                                  | 50,12<br>49,88                       |                                |
| WC40HX      | 42,25<br>42,00                 | 66,00<br>65,75                 |                                |                                  | 54,12<br>53,88                       |                                |
| WC45HX      | 48,25<br>48,00                 | 74,00<br>73,75                 | 2,60<br>2,51                   |                                  | 61,12<br>60,88                       | 1,70<br>1,45                   |
| WC50HX      | 52,25<br>52,00                 | 78,00<br>77,75                 |                                |                                  | 65,12<br>64,88                       |                                |
| WC60HX      | 62,25<br>62,00                 | 90,00<br>89,75                 |                                |                                  | 76,12<br>75,88                       |                                |

Alle Abmessungen in mm

## 9.4 HI-EX® GLEITSTREIFEN

HI-EX® Gleitstreifen sind als Sonderteile auf Anfrage erhältlich.

## 10 Prüfmethoden

## 10.1 PRÜFUNG VON GEROLLTEN BUCHSEN

Gerollte Buchsen sind in freiem Zustand nicht formstabil und die Stoßfuge ist geöffnet. Sie passen sich aber nach dem Einpressen in die Gehäuse-Aufnahmebohrung  $D_H$  weitgehend der Form der Gehäuse-Aufnahmebohrung an. Dies geschieht infolge des Übermaßes zwischen dem Buchsen-Außendurchmesser  $D_0$  und der Gehäuse-Aufnahmebohrung  $D_H$ . Aus diesem Grund können der Außendurchmesser und der Innendurchmesser gerollter Buchsen nur mit speziellen Prüfeinrichtungen und Prüfmitteln geprüft werden.

Die Prüfmethoden sind in ISO 3547 Teil 1 bis 7 festgelegt.

#### Prüfung A nach ISO 3547 Teil 2

Prüfen des Außendurchmessers D₀ in einer Prüfvorrichtung mit Prüfaufnahme und Einstelldorn.

| PRÜFUNG A NACH ISO 3547TEIL 2 (AN PM2015HX)     |                     |
|-------------------------------------------------|---------------------|
| Prüfaufnahme und Einstelldorn d <sub>ch,1</sub> | 23,062 mm           |
| Prüfkraft F <sub>ch</sub>                       | 4500 N              |
| Grenzwerte für Δz                               | 0 and -0,065 mm     |
| Außendurchmesser D <sub>o</sub>                 | 23,035 to 23,075 mm |

Tabelle 7: Prüfung A nach ISO 3547 Teil 2

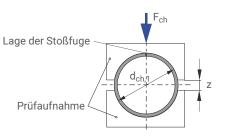



Abb. 34: Prüfung A, Beispiel für die Zeichnungseintragung

#### Test B (alternativ zu Test A)

Prüfung des Außendurchmessers mit einer GEHT / GEHT NICHT Ringlehre.

#### Prüfung C nach ISO 3547 Teil 1

Zur Prüfung des Innendurchmessers  $D_{i,a}$  ist die Buchse in einen Lehrring einzupressen, dessen Nenndurchmesser den Maßen nach ISO 3547, Teil 1, Tabelle 6 entspricht. Die übrige Ausführung des Lehrrings muss DIN 31672 entsprechen. Der Innendurchmesser wird mit einem 3-Punkt-Messgerät oder mit einem Gut- und Ausschusslehrdorn gelehrt.

#### Prüfen der Wanddicke (nach Vereinbarung)

Die Buchse wird kontinuierlich auf einer, zwei oder drei vorgegebenen oder vereinbarten Messlinien gemessen.

# Buchse in Lehrring eingepresst 20,061 0 0 0,050 A

Abb. 35: Prüfung C, Beispiel für die Zeichnungseintragung

#### Prüfung D nach ISO 3547 Teil 2

Prüfen des Außendurchmessers mit Präzisions-Messband für D<sub>i</sub> >120 mm.

## 11 Technisches Datenblatt

E-Mail Adresse \_



Nicht sicher, welches GGB Material für Ihre Anwendung geeignet ist? Bitte füllen Sie das nachstehende Formular aus und leiten Sie es an Ihren GGB Vertriebsmitarbeiter oder Distributionspartner weiter.

| DATEN ZUR GLE                   | ITLAGERAUSLEGUN                                    | G                                                  |                    |                     |                                                |
|---------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------|---------------------|------------------------------------------------|
| Anwendung:                      |                                                    |                                                    |                    |                     |                                                |
| Projekt / Nr.:                  |                                                    | Stückzahl:                                         | Neukons            | truktion be         | stehende Konstruktior                          |
| Punktlast                       | Umfangslast                                        | Rotierende Bewegung                                | Oszilliere         | nde Bewegung        | Linearbewegung                                 |
| ABMESSUNGE                      | N [mm]                                             | PASSUNGEN & TOLE                                   | RANZEN             | LAGERART:           |                                                |
| Innendurchmesse                 | r D <sub>i</sub>                                   | Welle                                              | D <sub>J</sub>     | □ <b>-</b> 12121.   | 5                                              |
| Außendurchmesse                 | er D <sub>o</sub>                                  | Lagergehäuse                                       | D <sub>H</sub>     | Zylindrische Buchse | <u> </u>                                       |
| Lagerbreite                     | В                                                  |                                                    |                    | ® <b>D</b> uchice   | <b>↑</b>                                       |
| Bunddurchmesser                 | D <sub>fl</sub>                                    | BETRIEBSUMGEBUN                                    |                    |                     | ە ق                                            |
| Bunddicke                       | B <sub>fl</sub>                                    | Umgebungstemperatur T                              | uiiib              |                     | T                                              |
| Scheibendicke                   | S <sub>T</sub>                                     | Werkstoff des Lagergehäu                           | uses               |                     | <u> </u>                                       |
| Streifenlänge                   | L                                                  | Gehäuse mit guten                                  |                    |                     |                                                |
| Streifenbreite                  | W                                                  | Wärmeübertragungseigen                             |                    |                     |                                                |
| Streifendicke                   | S <sub>s</sub>                                     | Leichte Pressteile oder is schlechten Wärmeübertra |                    | Bundbuchse          | -                                              |
| LAST                            |                                                    | Nichtmetallisches Gehäu                            |                    |                     | → B <sub>fl</sub>                              |
| Statische Belas                 | otuna                                              | Wärmeübertragungseige                              |                    |                     | <b>A</b> (111111111111111111111111111111111111 |
| Dynamische Be                   |                                                    | Wechselbetrieb in Wasse                            | er und Trockenlauf |                     |                                                |
| Axialbelastung F                | [N]                                                | SCHMIERUNG                                         |                    |                     |                                                |
| Radialbelastung F               |                                                    | Trocken                                            |                    |                     |                                                |
| radiabelasturig i               | [14]                                               | Dauerschmierung                                    |                    |                     | <b>▼</b> ////////////////////////////////////  |
| BEWEGUNGSA                      | RT                                                 | Mediumschmierung                                   |                    |                     | <u> </u>                                       |
| Drehzahl                        | N [1/min]                                          | Nur Initialschmierung                              |                    |                     | _                                              |
| Geschwindigkeit                 | U [m/s]                                            | Hydrodynamische Beding                             | gungen             | Anlaufschei         | be → S <sub>T</sub>                            |
| Hublänge                        | L <sub>s</sub> [mm]                                | Medium                                             | gungen             |                     | <b></b>                                        |
| Hubfrequenz                     | [1/min]                                            |                                                    |                    |                     | <b>A</b> [1]                                   |
| Oszillations-                   | φ [°]                                              | Schmierstoff                                       | D 1                |                     | ا ا ا                                          |
| zyklus                          |                                                    | Dynam. Viskosität η[m                              | Pas]               |                     |                                                |
| -(                              | <del>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ </del> | BETRIEBSSTUNDEN                                    | PRO TAG            |                     | <u>*</u>                                       |
|                                 |                                                    | Dauerbetrieb                                       |                    |                     | ₩                                              |
| Oszillationsfrequen             | z N <sub>osz</sub> [1/min]                         | Aussetzbetrieb                                     |                    |                     |                                                |
| Communication Equation 101 (17) |                                                    | Einschaltdauer                                     |                    | Gleitplatte         |                                                |
| GEGENWERKS                      | TOFF                                               | Tage pro Jahr                                      |                    | C                   | က်<br>မ                                        |
| Werkstoff                       |                                                    |                                                    |                    | •                   |                                                |
| Härte                           | HB/HRC                                             | LEBENSDAUER                                        | 6.1                |                     | <del>   </del>                                 |
| Rauheit                         | Ra [µm]                                            | Erforderl. Lebensdauer L                           | _ <sub>H</sub> [h] |                     | <b>*</b>                                       |
|                                 |                                                    |                                                    |                    | }                   |                                                |
| KUNDENDATEN                     |                                                    |                                                    |                    |                     | 7                                              |
| Firma                           |                                                    |                                                    |                    | Sonderteile         |                                                |
| Straße                          |                                                    |                                                    |                    | (Skizze/Zeid        | chnung)                                        |
| PLZ / Ort                       |                                                    |                                                    |                    | _                   |                                                |
| Telefon                         |                                                    | Fax                                                |                    | _                   |                                                |
|                                 |                                                    |                                                    |                    |                     |                                                |
|                                 |                                                    |                                                    |                    | -                   |                                                |

## FORMELZEICHEN UND BENENNUNGEN

| SYMBOL             | EINHEIT | BENENNUNG                                                           |
|--------------------|---------|---------------------------------------------------------------------|
| a <sub>B</sub>     | -       | Korrekturfaktor für die Lagergröße                                  |
| a <sub>E</sub>     | -       | Hochlastfaktor                                                      |
| aQ                 | -       | Korrekturfaktor für Geschwindigkeit/<br>Belastung                   |
| as                 | -       | Korrekturfaktor für Oberflächengüte                                 |
| a <sub>T</sub>     | -       | Korrekturfaktor für Temperatur                                      |
| В                  | mm      | Buchsenbreite                                                       |
| С                  | 1/min   | Belastungsfrequenz, dynamisch                                       |
| $C_{D}$            | mm      | Einbauspiel der eingepressten Buchse                                |
| $C_{Dm}$           | mm      | Einbauspiel der bearbeiteten Buchse                                 |
| Ci                 | mm      | Breite der Innenfase                                                |
| Co                 | mm      | Breite der Außenfase                                                |
| $C_T$              | -       | Gesamtanzahl der dynamischen<br>Lastwechsel                         |
| $D_H$              | mm      | Durchmesser des Lagergehäuses                                       |
| Di                 | mm      | Innendurchmesser der Buchse<br>oder der Anlaufscheibe               |
| D <sub>i,a</sub>   | mm      | Innendurchmesser der Buchse nach der<br>Montage in das Lagergehäuse |
| D <sub>i,a,m</sub> | mm      | Innendurchmesser der Buchse nach der<br>Bearbeitung                 |
| $D_J$              | mm      | Wellendurchmesser                                                   |
| $D_{Jm}$           | mm      | Wellendurchmesser der bearbeiteten<br>Buchse                        |
| Do                 | mm      | Außendurchmesser der Buchse<br>oder der Anlaufscheibe               |
| $d_D$              | mm      | Stiftlochdurchmesser                                                |
| dL                 | mm      | Öllochdurchmesser                                                   |
| d <sub>p</sub>     | mm      | Lochkreisdurchmesser des Stiftloches                                |
| F                  | Ν       | Nennbelastung/Lagerkraft                                            |
| Fi                 | N       | Einpresskraft                                                       |
| f                  | -       | Gleitreibungszahl                                                   |
| Ha                 | mm      | Eindrehtiefe für Gehäuse (z.B. bei Anlaufscheiben)                  |
| $H_{d}$            | mm      | Durchmesser der Gehäuseplanfläche (Anlaufscheiben)                  |
| L                  | mm      | Länge des Gleitstreifens                                            |
| L <sub>H</sub>     | h       | Lagerlebensdauer                                                    |
| L <sub>RG</sub>    | h       | Nachschmierintervall                                                |

| SYMBOL                            | EINHEIT             | BENENNUNG                                                     |
|-----------------------------------|---------------------|---------------------------------------------------------------|
| N                                 | 1/min               | Drehzahl                                                      |
| Nosc                              | 1/min               | Schwenkfrequenz                                               |
| р                                 | N/mm <sup>2</sup>   | Spezifische Lagerbelastung                                    |
| p <sub>lim</sub>                  | N/mm <sup>2</sup>   | Maximal zulässige spezifische<br>Lagerbelastung               |
| p <sub>sta,max</sub>              | N/mm <sup>2</sup>   | Zulässige statische Lagerbelastung                            |
| p <sub>dyn,max</sub>              | N/mm <sup>2</sup>   | Zulässige dynamische Lagerbelastung                           |
| Q                                 | -                   | Anzahl der Schwenkbewegungen                                  |
| R                                 | -                   | Anzahl der Nachschmierintervalle                              |
| Ra                                | μm                  | Mittenrauhwert<br>(DIN 4768, ISO/DIN 4287/1)                  |
| \$3                               | mm                  | Buchsenwanddicke                                              |
| s <sub>S</sub>                    | mm                  | Dicke des Gleitstreifens                                      |
| s <sub>T</sub>                    | mm                  | Dicke der Anlaufscheibe                                       |
| Т                                 | °C                  | Temperatur                                                    |
| $T_{amb}$                         | °C                  | Lager-Umgebungstemperatur                                     |
| $T_{max}$                         | °C                  | Maximale Temperatur                                           |
| $T_{min}$                         | °C                  | Minimale Temperatur                                           |
| U                                 | m/s                 | Gleitgeschwindigkeit                                          |
| u                                 | -                   | Korrekturfaktor für Gleitgeschwindigkeit                      |
| W                                 | mm                  | Breite des Gleitstreifens                                     |
| $W_{u  min}$                      | mm                  | Minimale Nutzbreite des Gleitstreifens                        |
| $Z_T$                             | -                   | Gesamtanzahl der Belastungszyklen                             |
| $\alpha_1$                        | 1/10 <sup>6</sup> K | Linearer Wärmeausdehnungskoeffizient parallel zur Oberfläche  |
| $\alpha_2$                        | 1/10 <sup>6</sup> K | Linearer Wärmeausdehnungskoeffizient senkrecht zur Oberfläche |
| $\sigma_{\!\scriptscriptstyle C}$ | N/mm <sup>2</sup>   | Druckfestigkeit                                               |
| λ                                 | W/mK                | Wärmeleitfähigkeit                                            |
| φ                                 | ٥                   | Schwenkbewegung: Ausschlag ab<br>Mittelachse nach jeder Seite |
| η                                 | Ns/mm <sup>2</sup>  | Dynamische Viskosität des<br>Schmiermittels                   |

## Produktinformation

GGB versichert, dass die in dieser Unterlage beschriebenen Produkte keine Herstellungs- und Materialfehler haben.

Die in der Unterlage aufgeführten Angaben dienen als Hilfe bei der Beurteilung der Anwendungseignung des Werkstoffes. Sie sind entwickelt aus eigenen Untersuchungen sowie aus allgemein zugänglichen Veröffentlichungen. Sie stellen keine Zusicherung von Eigenschaften dar.

Falls nicht ausdrücklich und schriftlich zugesagt, gibt GGB keine Garantie, dass die beschriebenen Produkte für irgendwelche speziellen Zwecke oder spezifischen Betriebsbedingungen geeignet sind. GGB akzeptiert keinerlei Haftung für etwaige Verluste, Beschädigungen oder Kosten, wie sie auch immer durch direkte oder indirekte Anwendungen dieser Produkte entstehen.

Für alle Geschäfte, die durch GGB abgewickelt werden, gelten grundsätzlich deren Verkaufs- und Lieferbedingungen, wie sie Teil der Angebote, der Lieferprogramme und der Preislisten sind. Kopien können auf Anfrage zur Verfügung gestellt werden.

Die Produkte sind Gegenstand einer fortgesetzten Entwicklung. GGB behält sich das Recht vor, Änderungen der Spezifikation oder Verbesserungen der technologischen Daten ohne vorherige Ankündigung durchzuführen.

Ausgabe 2023; deutsch (diese Ausgabe ersetzt frühere Ausgaben, die hiermit ungültig werden).

#### ERKLÄRUNG ZU BLEIGEHALTEN DER GGB-PRODUKTE / ÜBEREINSTIMMUNG MIT EU-RECHT

GGB verpflichtet sich umfassend zur Einhaltung aller geltenden nationalen, europäischen und internationalen Regelungen.

Wir setzen selbst entwickelte Prozesse zur ständigen Überwachung von Gesetzesänderungen ein.

Zudem arbeiten wir mit Kunden und Lieferanten zusammen daran, die Einhaltung von Gesetzen, Standards und Anforderungen abzusichern.

Dazu zählen unter anderem die RoHS und REACH Richtlinien.

Für GGB ist es von besonderer Bedeutung, als Unternehmen umweltbewusst zu agieren.

Ein starker Fokus liegt zudem auf der Sicherheit.

Wir orientieren uns an zahlreichen Unternehmensrichtlinien und setzen alles daran, international anerkannte Standards für Umwelt- und Arbeitsschutz einzuhalten oder zu übertreffen.

Darüber hinaus haben wir an allen unseren Standorten Managementsysteme etabliert, die der EN 9100, IATF 16949, ISO 14001 und ISO 9001 entsprechen.

Weitere Informationen finden Sie in unserem Downloadbereich. Hier können Sie sich die aktuellen Zertifikate unter:

#### https://www.ggbearings.com/de/zertifikate

und die die Erklärungen zu REACH und der RoHS unter:

 $\textbf{https://www.ggbearings.com/de/wer-wir-sind/qualitaet-und-umweltschutz} \ ansehen/downloaden. \\$ 

GGB® und HI-EX® sind Warenzeichen von GGB.

Jegliche Verwendung der Warenzeichen von GGB ist ohne deren vorherige schriftliche Genehmigung ausdrücklich untersagt.

©2023 GGB. Alle Rechte vorbehalten.







# PUSHING BOUNDARIES TO CO-CREATE A HIGHER QUALITY OF LIFE









#### **GGB HEILBRONN GMBH**

Ochsenbrunnenstr. 9 | D-74078 Heilbronn Tel: +49 7131 269 0 www.ggbearings.com/de



HB109DEU03-23HN